
Journal of Statistical Physics, Vol. 89, Nos. 3/4, 1997 

Electrons in a Lattice with an Incommensurate 
Potential 

G. Benfatto, t G. Gentile, 2 and V. Mastropietro 

Received January I, 1997; final May 14, 1997 

A system of fermions on a one-dimensional lattice, subject to a weak periodic 
potential whose period is incommensurate with the lattice spacing and satisfies 
a Diophantine condition, is studied. The Schwinger functions are obtained, and 
their asymptotic decay for large distances is exhibited for values of the Fermi 
momentum which are multiples of the potential period. 
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1. I N T R O D U C T I O N  

1.1. The Stat ic  Holstein model  [P ,  H ]  describes a system of fermions 
(electrons) in a linear lattice interacting with a classical phonon  field. It is 
obtained from a tight-binding Hami l ton ian  with neglect of the vibrat ional  
kinetic energy of the lattice (an approximat ion  which can be justified in 
physical models as the a tom mass is much larger than the electron mass). 

The Hamil tonian  of the model,  if we neglect all internal degrees of 
freedom (the spin, for example), which play no role, is given by 

x,  y ~ A  x e A  x ~ A  x ~ A  

where x, y are points on the one-dimensional  lattice A with unit  spacing, 
length L and periodic boundary  conditions; we shall identify A with 
{ x ~ Z" - [ L /2  ] ~< x ~< [ (L - 1 )/2 ] }. Moreover  the matr ix  txy is defined as 
txy = Ox, y - (1/2) [ Ox, y + ~ + 6x, y -  ~ ], where Ox, y is the Kronecker  delta. 
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The fields ~ are creation ( + ) and annihilation ( - )  fermionic fields, satis- 
fying periodic boundary conditions: ~kff = @x+L. • We define also ~ ---- 
e t H . t .  + --  H t  ~'x e with x = ( x ,  t),-fl/2<~t<~fl/2 for some f l>0;  on t anti- 
periodic boundary conditions are imposed. The potential Cpx is a real func- 
tion representing the classical phonon field, of a form which will be 
specified below (see w In (1.1)/~ is the chemical potential, and 2 is the 
interaction strenght. 

The expectation value of an observable (9 in the Grand-canonical 
state at inverse temperature fl and volume A is given by ( d ~ ) =  

- + . . ~ + ] ,  where Tr[ exp( - fill) d~ ]/Tr[ exp( - fill) ]. If d~ = T[ @ ~ ... ~ ~n ~'~ " '~ 
T denotes the anticommuting time ordering operator, we get the 2n-point 
Schwinger functions of the model. 

The most interesting problem about the model (1.1) is to find the 
minima with respect to cpx of the ground state energy of the system E(cp), 
in the thermodynamic limit. It is easy to show that all stationary points of 
E(cp) satisfy the condition 

r = 2p,,~, p,, = lim lira ( @ + @; ) (1.2) 

This equation has been rigorously studied, up to now, only in the case 
of density 1/2 [KL, LM]. However, if p =limL_.o~ L -~ ~.~ p~ is an irra- 
tional number, there have been recently, starting from [AAR], some 
numerical studies of the model, which led, through a strong numerical 
evidence, to the conjecture that, for small coupling, the ground state energy 
of the system E(cp) has a minimum for a potential of the form ~x = ~(2px), 
where ~(u) is a 2zc-periodic real function of the real variable u and p =zrp. 

The conjecture has a physical interest to explain the properties of 
strongly anisotropir compounds which can be considered as one-dimen- 
sional systems; in such systems one finds a charge density wave incommen- 
surate with the lattice, according to (1.2). 

In this paper, we shall not study the minimization problem of E(cp), 
but we shall analyze the properties of the two-point Schwinger function 
S2(x; y)= (Tr for a suitable set of values of/z and cp~ = ~(2px), 
with p/z~ irrational. [ Note that all the Schwinger functions can be expressed 
in terms of the two-point Schwinger functions, as the interaction is 
quadratic in the fermionic fields]. We shall do that by constructing a con- 
vergent expansion for S2(x; y), that we hope will be useful in studying the 
Eq. (1.2). 

In any case, this expansion allows to prove some properties of 
S/(x; y), which are interesting by themselves; these properties imply known 
results about the Schroedinger equation related to the model (1.1), but are 
not a trivial consequence of them (see discussion in w below). 
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1.2. As it is well known, the Schwinger functions can be written as 
power series in 2, convergent for 121 ~<ea, for some constant ea (the only 
trivial bound of ep goes to zero, as fl ~ oo). This power expansion is 
constructed in the usual way in terms of Feynman graphs (in this case only 
chains, since the interaction is quadratic in the field), by using as free 
propagator the function 

gr" a(x; y) = gL, a ( x _  y) = 
T r [ e - # n ~  - ~ )] 

Tr[e-~Uo] 

1 E 
L k ~ C j  L 

e-U'tx- y) ( e - re(k)  
, ~ 
1 + e - ~ k )  l ( r  > O) 

e - - ( f l + r )  e(k) t 
1 + e  --~-i-~ l ( r  ~< 0) 

(1.3) 

where Ho is the free Hamiltonian (2=O) ,x=(x ,  xo) ,y=(y ,  yo) ,Z= 
Xo-  Yo, I(E) denotes the indicator function (I(E) = 1, if E is true, I(E) = 0  
otherwise), e(k) = 1 - cos k - /~ and ~z =- { k = 2rm/L, n ~ Z, - [ L/2 ] <~ n <~ 
[ (L-1 ) /2]} :  

It is easy to prove that, if Xo -~ Yo, 

1 e - i k ' ( x - y )  

gL. #(X -- y) = M-.~lim L"fl k ~ ~L, p ~  -- iko + cos p F - -  COS k (1.4) 

where k = ( k ,  ko), k . x = k o x o + k x ,  @z.p-@z x ~ / ~ , ~ p - { k o = Z ( n +  1/2) 
rc/fl, n e Z, - M  ~< n ~< M -  1 } and p F is the Fermi momentum, defined so 
that cos pr = 1 --/t and 0 < pr < 7~. [ m  is an (arbitrary) integer]. 

Hence, if we introduce a finite set of Grassmanian variables { i f (  }, 
one for each of the allowed k values, and a linear functional P(dq;) on the 
generated Grassmanian algebra, such that 

-- ik o + c o s  PF-- COS k 
(1.5) 

we have 

1 ~ e-ik"x-Y)~k fP(d~)  ~x  ~ =gL'#( x" Y) (1.6) 
L f l  k e e L ,  # 

where the Grassmanian field q;x is defined by 

1 
if+ = ~  ~ ~k~e +ikx (1.7) 

Lfl k ~ ,  .p 

822/89/3-4-12 
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The "Gaussian measure" P(d~k) has a simple representation in terms 
of the "Lebesgue Grassmanian measure" d~k-d~, § defined as the linear 
functional on the Grassmanian algebra, such that, given a monomial 
Q(~ -,  ~, + ) in the variables ~, k ,  ~k ~-, 

if Q(O-, ~ ' + ) = H k  Ok-O~, 
(1.8) 

otherwise 

We have 

(1.9) 

Note that, since ( ~ l l ~ ) 2 = ( ~ k ~ ) 2 = O , e - : r 1 6 2  for any 
complex z. 

By using standard arguments (see, for example, [NO] ,  where a 
different regularization of the propagator is used), one can show that the 
Schwinger functions can be calculated as expectations of suitable functions 
of the Grassmanian field with respect to the "Gaussian measure" P(dr In 
particular, the two-point Schwinger function, which in our case determines 
the other Schwinger functions through the Wick rule, can be written, if 
Xo # Yo, as 

where 

SL'a(x; y ) =  lim [ P(d~,) e~q*~$ - ~k + .X ] r  

x ~ A  - -  

(1.10) 

(1.11) 

I fxo=  Yo, S~" P(x; Y) must be defined as the limit of (1.10) as x o - Y o  "--' 0- ,  
as we shall understand always in the following. 

Remark. The ultraviolet c u t o f f M  on the ko variable was introduced 
in order to give a precise' meaning to the-Grassmanian integration (the 
numerator and the denominator in the r.h.s, of (1.10) are indeed finite 
sums), but it does not play any essential role in this paper, since all bounds 
will be uniform with respect to M and they easily imply the existence of the 
limit. Hence, we shall not stress anymore the dependence on M of the 
various quantities we shall study. 
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1.3. We now define precisely the potential q~x- We are interested in 
studying potentials which, in the limit L ~ r are of the form q~x = ~(2px), 
where q~ is a real function on the real line 2re-periodic and p/zc is an irra- 
tional number, so that the phonon field has a period which is incommen- 
surate with the period of the lattice. We also impose that qS(u) is of mean 
zero (its mean value can be absorbed in the chemical potential), even and 
analytic in u, so that 

Z : - - ""  , IGI <~Fo e-el'~, (1.12) 
O ~ n ~ Z  

At finite volume we need a potential satisfying periodic boundary condi- 
tions; hence, at finite L, we approximate ~Px by 

[ ( L -  1 ) /2]  

(~ Z r~,, ez''pL'~ (1.13) 
n---- - -[  L /2]  

where pL tends to p as L ~ oo and is of the form p i_ = n L ~r/L, with n L an 
integer, relatively prime with respect to L. The definition of pL implies that 
2npL is an allowed momentum (modulo 2zc), for any n, and that the sum 
in (1.13) is indeed a sum over all allowed values of k, except k = 0. 

If we insert (1.13) in the r.h.s, of (1.11), we get 

[ ( L - -  1) /2]  1 
~ ( ~ )  = ~ L--fl Z 2(p. I//: 1//k+ 2nPL (1.14) 

n -- -- [ L / 2 ]  k E ~L ,  

where p ~ = (p ~, O) and k + 2np t is of course defined modulo 2n. 
Let us now suppose that p r  = rapt,  for some integer m >t 1, so that the 

~k ~ is small for k ~_ +_mpr. In this case (see (1.9)) there is no hope to treat 
perturbatively the terms with n = _+m and k near ~ mpL, but we can at 
most expect that the interacting measure is a perturbation of the measure 

_ 1 { 1 
P,~(d~h) - - ~  P(d~)  exp 2~,,, 

1 ) 
k o p k ~  I _  

(1.15) 

where ~ r  is a normalization constant and I_  is a small interval centered 
i n - p F ,  so small that I c ~ I + = ~ , i f / + - { k = k . + 2 p F ,  fc~I_}.  

It is very easy to study the measure (1.15); in fact Px(dff)= 
~ r , - i  dff d~ e x p [ -  J(~, if)], where J(~,  if) is a quadratic form, which can 
be simply diagonalized, since it only couples i f ( ,  k e l _ ,  with ff(+2mp," 
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One can show that there is an orthogonal transformation from the 
variables ~ (  to new variables X~, such that, if I - I  w I+, then 

1 {1  
J(~, O)=~ ~', ~', Z~Z~ [ -iko + e(k)] 

ko~ ~p k r , 

, } + - ~ ,  Z~Zk[- iko+E(k)]  (1.16) 

where e(k)= cos P F-- COS k is the free dispersion relation, while E(k) is the 
new dispersion relation near + PF. E(k) is such that 

E(k) sign(lk[--PF) >I 12q3m [ (1.17) 

Note that Pr is an allowed momentum, if mnL is even. In this case, 
there are two eigenstates of the one-particle Hamiltonian hxy corresponding 
to (1.16) with energy/t, for 2 = 0  (i.e., of hxy= txy; see (1.1)); the coupling 
removes the degeneracy and the corresponding interacting eigenstates have 
energy p 4- 2~,,,. 

Given a one-particle Hamiltonian hxy (in the model (1.1) hxy= 
t~ r - 2~px ~y) with spectrum Z', we define as usual the spectral gap around 
the level g in the following way: 

A = inf{EeZ'" E > / t }  - s u p { E e L ' "  E< / t}  (1.18) 
m 

The bound (1.17) implies that the measure Pa(d~k) is associated with a 
one-particle Hamiltonian with a spectral gap 2 [2q~m [ + O(L-~) around the 
level g. 

It is also easy to prove that the zero temperature density pL, defined 
as the limit as fl ~ ov of the finite fl density, given by 

1 
pL, a =  _ Hmo - -L Z sL'P( x, v; x, O) (1.19) 

x 

is independent of 2, for the approximated model, and is given by 
pL =pF/lr =mnr/L. This follows from the previous calculations and from 
the remark that pL is equal to the number of eigenvalues lower than p of 
the one-particle Hamiltonian plus half the number of eigenvalues equal to 
g, divided by L; hence the two eigenstates that degenerate for 2 = 0 (if they 
are present) give the same contribution to pL for any value of 2, as well as 
all the others, thanks to (1.17). 

We shall prove that there is a diverging sequence of volumes L~, such 
that the measure P(d@) exp[ ~(@) ] is a perturbation of/~a(d@), for 2 
small enough, uniformly in i and ft. In particular, we shall prove that there 
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is a spectral gap of order [AC~m ] around /z, independent of i, if PF--" 
mp Li (m~ 2n). 

We shall prove also that the density pti.a is a continuous function of 
2 near 0, uniformly in i and fl, as well as its limit as fl ~ oe. This result 
implies that limp_..~ pZ','/~=pF/n , independently of 2; in fact, at finite 
volume and zero temperature, the density can take only a finite set of 
values, hence it is constant if it is continuous. 

In order to implement this program, one must face one main difficulty, 
related to the fact that P z., converges to an irrational number as L i .-.-r oo, 
SO that there are terms in the interaction (1.14), which are almost equal to 
those included in the definition of/Sx(dO), without being exactly equal. 
These terms can not be simply included in the definition of/Sx(dO) and 
make difficult to control the perturbation theory. This difficulty will be 
cared by using the decreasing property of ~,,, see (1.12), and a diophantine 
condition hypothesis on p. 

1.4. Denote by II0~-flllT, the distance on the one-dimensional torus 
T ~ of 0cr e ql -~, and, for x = (x, Xo), y = (y, Yo) e R 2, by I x -  Yl the distance 
I x -  yl = ~ / ( x -  y)2 + (Xo- yo) 2. 

Moreover, we define 

f dk 
S,(x; y ) =  gtl)(x;  y ) +  (2,n), 2 [ 1 - f t ( k ) ]  

x ~b(k, x, a) ~b*(k, y, a) 
e - ~ko(xo - yo) 

- iko + e(k, a)  
(1.20) 

where 

f dk e - -  ikO( xO - -  YO) 

gtl)(x; y ) =  (2n)2fI(k)  ~ iko ~ e ( k  ~ 

a= ~ 

e(k, a ) =  [ 1 - c o s ( l k l - - P F ) ]  COS Pe 

+ s ign(Ikl-  Pr) x/[sin(Ikl ' Pp) sin Pr]  2 + a 2 

~(k, x, a ) =  e-ik~u(k, x, a) 
[ ~ _ s i g n ( l k l - p F ) a  

u(k, x, a) = e 'sign'k' pr.,~ cos(prx)  1 ~ / ( s in ( Ik l -  PF) sin pr) 2 + a 2 

sign( lkl - pF) a ] 
- / sign ,) sin p:) 1 + , / i s i n i  Ik l -  o.2 

(1.21) 
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and f~(k) denotes a cutoff function with support far enough from the two 
singular points k = (--+PF, 0), see (2.4) in Sec. 2 for a precise definition. 

Note that S~(x; y) is essentially the two-point Schwinger function of 
the approximate model (1.15). 

In order to make precise the claim made before that the measure 
P(d~,) exp[ ~'(~,)] is a perturbation of P a(d~,), we shall prove the following 
theorem. 

T h e o r e m  1. Let us consider a sequence Lg, i e Z +, such that 

lim Li = oo, l im pL, = P 
i---* o o  i---~ o o  

and let S ' , " ( x ;  y) be the Schwinger function (1.10). Suppose also that 
there is a positive integer m such that pF=mpL,(mod 2zc), rpm # 0  and PL, 
satisfies the diophantine condition 

112npz., II r, ~ Co I nl - ~, 
Zi 

V0 :/: n ~ Z, Inl ~< ~ (1.22) 

for some positive constants Co and z independent of i. Then there exists 
eo > 0, such that, if 2 ~ R and [2[ ~< to, the following sentences are true. 

(i) 

(ii) 

There exists the limit S(x; y) = limp_. ~. i_. ~ SL,'~(x; y) 

S(x; y) is continuous as a function of 2; moreover, if we write 

S(x; y) = S~(x; y ) +  2S2(x; y) (1.23) 

there are three constants K~, K 2, K3 and, for any N >  1, a constant C~, 
such that, if I x -  y[ 1> K3 l a l - ' ,  

[S,(x; y)[, [S2(x; y)[ ~< K, I~[ 
C~ 

1 + (Icrl Ix - y l ) ~  
(1.24) 

while, for Ix - y[ ~ K3 [a[- l, one has 

[S2(x; Y)I ~< K2(1 + [x - y [ ) - '  (1.25) 

Finally, for any I x - y [ ,  one has 

[S,(x; y ) -  g(x; y)] ~< K2 [a[ log([a[- '  + 1) (1.26) 

g',' P( x" y). where g(x; y) - lima_. ~, i---~ 
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(iii) For any i, the density pL,./~, given by (1.19), is a continuous 
function of 2, uniformly in fl, as well as its limit as fl ~ ~ .  

(iv) For any i, there is a spectral gap d >~ [a]/2 around p. 

1.5. The above theorem states that, if in the infinite volume limit the 
Fermi momentum is a multiple of the period of the potential (p r=  rap) and 
p/n is an irrational number verifying a diophantine condition, then the 
two-point Schwinger function decays faster than any power if I x - y [  >~ 
K3la[ -1, while it decays as the free one ( 2 = 0 )  for [x-y[~< 
c[ la[ log( la l -~+ 1) ] - t ,  for a suitable constant c. The last claim follows 
from (1.21), (1.25), (1.26) and the remark that g(x) decays as 1/Ixl for 
Ixl ~ oo, in the sense that lim suplxl_. ~ Ixg(x)l > 0. 

The region where the behaviour for Ixl ~ oo is Ixl -~ enlarges taking 
larger and larger m. As the points of the form mp are dense on q]-~, very 
small changes in the Fermi momentum (related to changes of the density 
of the system) can correspond to very different values of rn, and so to very 
different asymptotic behaviour of S(x; y) (one can pass for instance with a 
very small difference in P F from a situation in which the faster than any 
power decay is observable to a situation in which it occurs at so large dis- 
tances to become unobservable). 

The fact that there is a spectral gap suggests that the large distance 
decay is indeed exponential. However, this property does not follow from 
our proof, because of the choice of the multiscale decomposition of the 
propagator in terms of compact support functions, instead of analytic ones 
(see Sec. 2). This other choice would be possible, but the proof would be 
more heavy. 

1.6. The infinite volume two-point Schwinger function is obtained 
as the limit of SL,'#(x; y), when pz,,/zr is a sequence of rational numbers 
verifying the generalized diophantine condition (1.22) and converging to an 
irrational diophantine number. A sequence with the above property is 
constructed in Appendix 1, for any diophantine number. 

Finally, by looking at the proof of Theorem 1, one can see that, if 
there are sequences L~, PF, L,-- 2nnF, L,/Li, Pt., such that lim~_, oo Li--- oo and 

Zi 
112npL, IIT,, IlPr, L,+npL, IIT,~foInl -~, VOr Inl~ T (1.27) 

for some positive constants Co and z, then the two-point Schwinger 
function is given by 

S(x; y ) =  g(x; y ) +  2S2(x; y) (1.28) 
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where g(x; y) is defined after (1.26) and 

Ig(x; y)J, IS2(x; Y)I ~< 
K4 

1 + I x -  Yl 
(1.29) 

for some constant K4. However, since in this case the construction of a se- 
quence of Li, PF. L,, PL, verifying (1.27) seems to be much more involved, while 
the renormalization group analysis, to which mainly is devoted this paper, 
seems to be essentially the same, we prefer not to discuss this case here. 

1.7. Systems of fermions on a lattice subject to a periodic potential 
incommensurate with the period of the lattice are widely studied, starting 
from [P] ,  in which this problem was considered relevant to understand a 
system of electrons in a lattice and subject to a magnetic field and was 
faced by stud~ing the spectrum of the finite difference Schroedinger equation 

- f f ( x  + 1 ) - ~ ( x -  1 ) + 2cp.,. ~(x) = E~p(x) (1.30) 

where ~Px is defined as before. This problem is of course closely related to 
the study of the spectrum of the Schroedinger equation 

d2~(x) 

dx 2 
~ +  2q~x@(x)=E~k(x) (1.31) 

where ~px=~(~x), ~ e R  d is a vector with rationally independent com- 
ponents and ~(u) is 2~z-pedodic in all its d arguments. 

In fact in (1.30) there are two periods, the one of the potential and the 
intrinsic one of the lattice, and this makes the properties of (1.30) and of 
(1.31) (with d = 2) very similar to each other. 

The eigenfunctions and the spectrum strongly depend on 2. For large 
2 there are eigenfunctions with an exponential decay for large distances; 
this phenomenon is called Anderson localization (for details, see for 
instance [ P F ]  and references therein). On the other hand, for small 2 and 
for certain values of E, there are eigenfunctions which are quasi-Bloch 
waves of the form ei*~e)Xu(x) with u(x)= t2(px) for (1.30) and u(x)= ~(t~x) 
for (1.31), ~ being 2~t-periodic in its arguments. 

This was proved for (1.31 ) in [ DS ], with the condition that there exist 
positive constants Co, r such that 

[co. n[ I> Co [nl-~, [k(g) + o~. nl t> Co In[-L V0 ~ n ~ Z a (1.32) 

by using KAM techniques modulo some technical assumptions (like the con- 
dition of large E) which were relaxed in [E].  An analogous statement 
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was proved for (1.30), with the condition Ilk(E) + npllT, ~ Co Inl-~ (see 
Theorem 1 for notations), in [BLT], by using essentially the same ideas as 
in IDS].  

The existence of quasi-Bloch waves for (1.31) with k(E) verifying 
k(E) = �89 n and Io. nl i> Co Inl-~ was proved, together with the existence 
of gaps in the spectrum, in [JM, MP] with some additional assumption 
removed in [ E ]. 

Our results are in agreement with those contained in the papers 
referenced above, but we think that they do not follow completely from 
them. In particular, the properties of the Schwinger functions do not 
seem to us a consequence of the known properties of the one-particle 
Hamiltonian spectrum. 

1.8. The proof of Theorem 1 is performed by using renormalization 
group techniques combined with the diophantine condition (1.22). The 
proof of the convergence of the perturbative series for the two-point 
Schwinger function is similar to the proof of the convergence of the 
Lindstedt series for the invariant tori of a mechanical system, [ G, GM],  
in which a notion of resonance is introduced and it is shown that, thanks 
to the diophantine condition, if one subtracts the relevant part of the value 
associated to the resonances (resonance value, see [GM]  and Sec. 3.3 
below), the resulting series is convergent. In the Lindstedt series the sum of 
the relevant part of the resonance values is vanishing; this is not true in this 
case, in which the relevant part of the resonance value is a running coupling 
constant, in the renormalization group sense. However, here a different 
mechanism still ensures the convergence of the perturbative series. 

The paper is organized as follows. In Sec. 2 we introduce the multi- 
scale decomposition of the propagators and set up the graph formalism, 
which allows us to treat all contributions corresponding to graphs not 
belonging to a certain class (graphs without resonances, see the definition 
in Sec. 2.5); this will lead to Lemma 1. In Sec. 3 we show that a more 
refined renormalization procedure (which consists essentially in changing 
suitably the "Grassmanian integration" at each step of the renormalization 
procedure) allows us to extend the result of Sec. 2 to all graphs (Lemma 2); 
then the convergence of the effective potential follows. In Sec. 4 we study 
the two-point Schwinger functions, with the same techniques of Sec. 3, and 
we prove Theorem 1. 

2. M U L T l S C A L E  D E C O M P O S I T I O N  

2.1. In order to simplify the notation, in this section and in the 
following one we shall not stress anymore the dependence on fl and L = L,. 
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of the various quantities; in particular PL,, g~-i.a(x; y) will be written simply 
as p, g(x; y). 

It is convenient to decompose the Grassmanian integration P(dr  into 
a finite product of independent integrations: 

1 

P(d,/,)= l-I P(d  
h=h# 

(2.1) 

where hp > -  oo will be defined below (before (2.9)) This can be done by 
setting 

1 I 

h ---- h#  h = h# 

(2.2) 

where ~[h)• are families of Grassmanian fields with propagators g~h) which 
are defined in the following way. 

We introduce a scaling parameter y >  1 and a function z ( k ' ) e  
C ~ ( T  i • R), k' = (k', ko), Such that, if Ik'l - ~/ko 2 + IIk'll ~,, 

z(k')  = % ( - k ' )  = {10 
if [k'l < to = ao/~' 

(2.3) 
if Ik'l >ao  

where ao = min{ p r/2, ( re-  p F)/2 }. This definition is such that the supports 
of g ( k - P c ,  ko) and g(k  + PF, ko) are disjoint and the C ~ function on 
T ~ x R  

f~(k) = 1 - % ( k - p r ,  k o ) - % ( k  + Pr, ko) (2.4) 

.is equal to 0, if 11 [k[ - PFI[ 2' + k2o < t2o �9 
We define also, for any integer h ~< 0, 

fh(k') ----X(7-hk ' ) --X(7 - h +  'k') (2.5) 

we have, for any h < O, 

0 

z ( k ' ) =  Y'. fh (k ' )+Z(7-~k  ') (2.6) 
h=~+l 

Note that, if h~<0, fh(k')=0 for [k ' [<to7 h-1 or [k'[>to7 h+~, 
fh(k') = 1 for ik'l = to7 h. 

and 
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We finally define, for any h ~< 0, 

fh(k) = fh(k--  PF, ko) + fh(k + PF, ko) (2.7) 

fh(k) ,r -- = (2.8) 
- iko + cos p F - c o s  k 

The label h is called scale or frequency label. 
Note that, if k ~ ~,~. p, then Ikol ~ zr/fl, implying that fh(k) = 0 for any 

h <ha=ra in{h"  toy h+ 1 > lr/fl}. Hence, if k ~ L . # ,  the definitions (2.4) and 
(2.7), together with the identity (2.6), imply that 

1 

1-- E L (k )  
h =h# 

(2.9) 

The definition (2.7) implies also that, if h~<0, the support offh(k) is 
the union of two disjoint sets, A~ and A~-. In A~-, k is strictly positive 
and IIk--prllv~<~ao?h<~ao, while, in A s  is strictly negative and 
Ilk + PFil T~ ~< ao yh. Therefore, if h ~< 0, we can write ~k~ h) +- as the sum of two 
independent Grassmanian variables @th)• with propagator k, ~o 

f (h)-- 1It(h)+ = Z ~  ~kl  k2 ~(o I ^(h) P(d~k 'h)) ~//kl colt/" k2, m2 , , , , ~ , 2 g , o ,  (k t) (2.10) 

so that 

= ~o  = g ~ o  (2.11) k, 
to-" 4-1 to---- +1 

O(cok) f (k) 
g~o (k )=  (2.12) 

- iko + cos P F-- COS k 

where O(k) is the (periodic) step function. If cok > 0, we will write in the 
following k = k' + c0pF, where k' is the momentum measured from the Fermi 
surface and we shall define, if h ~< 0, 

~(h) , ^(h) fh(k') g~, ( k ) =  g~, (k )=  (2.13) 
- iko + VoCO sin k' + ( 1 - c o s  k') cos PF 

where Vo = sin pF. 
In order to simplify the notation, it will be useful in the following to 

denote ~k~) also as ~ ) ( k ' ) ,  with k = k ' +  PF. 
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It is easy to prove that, for any h ~< 1 and any 09, 

(h) I - -h  [o~o, (k)1 ~< Go), (2.14) 

for a suitable positive constant Go, depending on P r and diverging as 
a 0 - + 0 .  

In the following we shall use also the definitions 

h h 

~,( ~h)_+ ~, (kj) + "( ~< ~J)(k'  k.o, = @ - ,  CO, go?h)(k ')= ~ o,,,, ) 
j = h/~ j = hp 

h h 

i/]( ~</,)+ _ ~ i ] / l j )+ A(~<h) (j) 
k - -  - '  g k  "~ "-- E g 

j --- h/t j = hfl 

Of course ~kff _~,(~l)•  and g'k --o~(~l)(k) �9 k 

(2.15) 

2.2. The most naive definition for the effective potential " at scale" h 
is the following: 

e'"h'(*'<'h')+ eh= f p(d$(h+ ')) .. . f p(d~k(')) e"(*'<'") (2.16) 

where Eh is defined so that ~(h)(0) = 0. 
If we define p =  (p, 0) and p r =  (PF, 0), ~(~t '< ' ) )  can be written as 

t(L- ~)/2] 1 

n - -  - - [ L / 2 ]  Lfl k~L.p 
-<,,+ r  k+2,,p (2.17) 

with ~ o = 0 ,  see (1.12). Hence the effective potential on scale h~<0 can be 
represented as 

[ ( L - -  1) /2]  1 

n---- -- [ L / 2 ]  k ~ L ,  # 

,,g/-~h)(k)lp(<,',)+ (<h)- 
k. to ~1 k + 2np, to' (2.18) 

Note that here, as always in the following, the momentum k is defined 
modulo 2m 

The kernel W'(f)(k) admits the diagrammatic representation in terms 
of chain graphs described in Sec. 2.3 below. Note that a sum over the labels 
09, eg' could be introduced in (2.18), but it is useless as the labels co and 09' 
are uniquely determined by the signs of k and k +  2np respectively: 
co = sign(k) and o9' = sign(k + 2np) (see comments after (2.12)). 
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We shall study the convergence of the effective potential in terms of 
the norm 

[ ( L  - -  I ) / 2 ]  

II~h)ll-= ~ sup l#~fl~(k)l (2.19) 
n-------[L/2] ke~h 

where ~h = {k e ~L.a" Z~, =hp.L,(k) :#0}. 

2.3. A graph 0 of order q (see Fig. 1 below) is a chain of q + 1 lines 
[~,..., Cq+~ connecting a set of q ordered points (vertices) v~ .... , Vq, so that ~. 
enters v i and ~,.§ exits from v,.; [~ and [q +~ are the external lines of the 
graph and both have a free extreme, while the others are the internal lines; 
we shall denote int(~9) the set of all internal lines. We say that v~ < vj if v~ 
precedes vj and we denote v~. the vertex immediately following vj, if j < q. 
We denote also by r the line entering the vertex v, so that ~,. = fv,, 1 ~< i ~ q. 
We say that a line r emerges from a vertex v if r either enters v ({ = r or 
exits from v (r = r 

We shall say that ,9 is a labeled graph of order q and external scale h, 
if 0 is a graph of order q, to which the following labels are associated: 

�9 a label n v for each vertex, 

�9 a frequency (or scale) label h for both the external lines and a 
frequency label he t> h + 1 for each internal line, [ e int(0), 

�9 a label toe = + 1 for each line of frequency label he ~< 0 and a label 
toe= + 1 for each line of frequency label h e =  1, 

�9 a momentum k r , = k = k '  +~IPF for the first line, 

�9 a momentum kev=k+~<L,  2n~p=k' +Y'.~<~2n~p+(ogt-coev) PF 
+CoeopF, for each other line. 

Moreover, ho = m i n r e i n t l o ) h r  will be called the internal scale or simply the 
scale of oa. 

A graph can be imagined to be obtained from q graph elements 
(see Fig. 2), each of which is formed by a vertex with two emerging half- 
lines (representing the first one a q/§ field and the second one a i f -  field), 
by pairing the half-lines (contractions) in such a way that the resulting 

i.. ~ b.. ~ , ,  IL  

/31 /32 1)3 'O4 

Fig. 1. A graph of order q--4. 
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I) 

Fig. 2. A graph element. 

graph turns out to be connected and only two half-lines remain non con- 
tracted (the external lines of the graph). Each line arises from the contrac- 
tion of a half-line representing the ~,- field of a vertex v with a half-line 
representing the ~, § field of a vertex w: then the line is supposed to carry 
an arrow pointing from v to w. We suppose also that a waving line emerges 
from each vertex v: it represents the component ~b,o of the phonon field. 

For each line : we set k':=(k':,ko), and we associate to it a 
propagator g(h,)(k~). 

The value of the graph is given by 

Val(~9)=(~YI ~ . ~ ] (  I-I x~.,-(h:) (k~.)] (2.20) 
g e in t ( ,9 )  

Let 3 -h denote the set of all labeled graphs of order q and external n, q 

scale h, such that Zv ~ ~ 2nvp = 2np and - [ L/2 ] ~< n ~< [ (L - 1 )/2 ]. 
Then we have, if k e ~h, 

oo 

(h) (k), ~/r = ~ Val(~9) (2.21) ~r E ~:.,q 
q - -  1 , 9 ~  r'h 

n, q 

Since the topological form of the graphs of order q is given (they are all 
chains of q vertices, see Fig. 1), the sum in (2.21) is over all the possible 
assignments of the labels {n~} and {co:, h:}, with the constraint that 

�9 Z ~  n~ = n mod L, 
�9 h :  >i h + 1 W' ~ int(~9), and 

�9 co: = sign(k:), if h: <~ O, and co: = + 1, if h: = 1. 

Note that k:=k::+2nop. The constraint on co: arises from the 
comments after (2.18): it will disappear in Sec. 3, where new graphs will be 
introduced in which also "non diagonal" propagators will be allowed. 

2.4. Given a labeled graph ~9, we can consider a connected subset of 
its lines, T, carrying the same labels they have in ,9. If the external lines of 
T (that is the lines that have only one vertex inside T) have frequency 
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labels smaller than h r, where h r denotes the minimum between the fre- 
quency labels of its internal lines (i.e., the lines with both vertices inside T), 
we shall say that T is a cluster of scale hr. An inclusion relation can be 
established between the clusters, in such a way that the innermost clusters 
are the clusters with the highest scale (minimal clusters), and so on. Note 
that 0 itself is a cluster (of scale h o). 

Each cluster T has an incoming line :~r and an outgoing line :~', we 
set 2n rP = k :  r -  k:' r, so that n r = ~v~ r n~. The maximum between h:, r and 
h:o r will be called the external scale of T. If a line : is internal to a cluster 
T, we write : e T. 

Given a cluster T we introduce the following notations. 

(1) We call To the collection of internal lines in T which are on scale 
h r  (i.e., the lines : e T such that he. = hr), and denote by L r  the number of 
elements in To. We denote also by q r the number of vertices inside T; of 
course q r >I L r + 1. 

(2) Let D r  be the depth of the cluster defined recursively in the 
following way: D r = l ,  if T is a minimal cluster, and D r = l +  
max r,= r Dr , ,  otherwise. We shall denote ~n(0)  the family of all clusters of 
depth D contained in 0. 

(3) We say that a vertex v is in To, v e To, if v e T and there are no 
other clusters inside T containing v. We define M ~  ) the number of vertices 
in To. 

(4) We call M~I ) the number of maximal clusters strictly contained in 
T; of course M ~ ) +  M ~ ' -  1 = Lr .  Define also M r  = M~)  + M ~  ). 

(5) We say that a line : intersects a cluster T ( :  c~ Tr ~ ) ,  if : is 
either internal or external to T. 

2.5. Defini t ion (Resonances). Given a labeled graph 0 and a 
cluster V contained in 0, we say that V is a resonant cluster of on, if the 
momenta measured from the Fermi surface of the incoming and of the out- 
going lines are the same, i.e., k~,, = k~ .  We define resonant vertex a vertex 
v with k ' tc=k'~ and h:,h:c<~O. We call resonances the set of resonant 
clusters and resonant vertices. 

Note that, if V is a resonance, [ h : ~ - h ~ [  <~ 1, as a consequence of the 
definition above. Moreover, i f  k'~ +cO~pF and k~ + a~2PF are the momenta  
of the incoming and outgoing line in a cluster or a vertex, the momentum 
conservation says that 

ktl - k i + ( (.o I - (_1) 2 ) P F 31- 2 n p  - -  0 ( 2 . 2 2 )  

where n = n v for a cluster V and n = nv for a vertex v. 



672 Benfatto et  al. 

In the case of a resonance k'~ = k[ so that 

(col--('02) Pr + 2np =0 (2.23) 

which can be verified only in two cases, if p r =  mp for some integer m, as 
we shall suppose from now on: 

I1) col = co2,  n=O (2.24) 
2) c o l = - ( o 2 ,  n = - c o l m  

(resonance conditions). 
We say that in the first case we have a v-type resonance, while in the 

second case we have a a-type resonance. Note also that there is no reso- 
nant vertex of v-type, since CPo =0 ,  (see (1.12)). 

2.6.  L e m m a  1 If ~{h) �9 3~/ 'n ,q (k  ) is defined as the sum in the r.h.s, of 
(2.21), restricted to the family of graphs without resonances, then, if y > 2 ~, 

sup I~. ,  q ( k ) i -  Ch) ~ (IAI gl )  q e-~r t-I (2.25) 
k ~  ~ h  

for some constant B l- 

The proof of Lemma 1 is in Appendix 2, Sec. A2.2. 
To obtain a bound like (2.25) also for graphs with resonances (and so 

for all graphs), a more refined procedure is required, which next section 
will be devoted to. 

3. R E N O R M A L I Z A T I O N  

3.1. We introduce a localization operator ~ ,  which acts on the effec- 
tive potential in the following way: 

V' k '  + (olP F, r I W' k '  + tO2PF+ 2np,  to 2 

k '  ~ t . ,  # 

-- k '  + (o2P F, - -  W' k '  + co ! PF, 6~ (o 2 l 
C~(~ r~ PF+ 2np" O-'~ k' ~L. :  (3.1) 

Note that k ' = 0  is not an allowed value, but ~r +COt PF) is a well 
defined expression for any real values of k', so that ~/'~h)(colpr) is well 
defined. 

The effect of this operator is to "isolate" the problem connected to the 
resonances, in order to treat it separately in a way that we shall discuss 
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below. We say that ~ ( h ) ( ~ ( ~ h ) )  is the relevant part (or localized part) of 
the effective potential y-th)(~t ~h!). 

We perform the integration P(dq/) in the following way. First we 
integrate the field with frequency h = 1 (ultraviolet integration), which can 
be written, up to a constant, 

?(a~(')) = I-[ ar ~)+ a4,(~ ')- 
k 

Y' ( - + cos P c -  cos k) 
1 

x exp Lfl k ~ ~L. # l(k)[ iko 

X ~/(I)+ ~#(1)-- ] }  (3.2) 

and we obtain ~r(o)(@(40)) as a power series in 2, convergent in the norm 
(2.19), for [2[ small enough, say [2[ ~<go, by (2.25). Then we decompose 
@(4o) as in (2.11), and we write, using also the evenness of the potential, 

. ~ ( o )  = voF{O) + soF~) 

where F(~ and F~  ) are given by 

(3.3) 

1 
F ~ ' =  E L---fl E 

r.o--~ + 1  k ' 6 ~ L ,  # 

1 
Fth'=,, E - -  ,E 

oT= =t=1 L fl k,  ~ ~ L, fl 

k '  + toPF, to to 

!~r + ( ~ < h ) - -  
k" + topF, to ~r k" -- roPF, -- to (3.4) 

with h =0.  Note that, if ]2[ is small enough, by (2.25) there exists Ao such 
that 

ISo-A~ml ~<Ao I;tl ~ e -m~/2, Ivol ~<Ao I~.1 ~- (3.5) 

We have to study 

f P(dq, ~o) e~,O,t, ~-o) (3.6) 

where P(d~, ~ ~o)) is the Grassmanian integration with propagator 

1 gt ~~ x; Y) = ~ ~ E e-ik"(x-Y)e-i(tox-to'Y) PFgto,,~O)tk'~,,, ) 
to, t o ' = + l  L ~  k '  E ~ L , #  

gt ~<O)(k, ~ j,~, gt~O)(k, 
60, O9 p x / ~ o.)' ) (3.7) 

822/89/3-4-13 
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with 

~(_< g'~~ = 
Co~(k  ') 

- iko + (1 - c o s  k') cos P F +  VoW sin k "  

h 

C h ' ( k ' ) =  Z f j (k ' )  
j----- hp 

(3.8) 

see (2.13), (2.15). 
We write 

f p(d~b ~ ~9)) e~.(r 1 )) e f'~ (3.9) _ Xo ; P(d~,, <.o - o, 

where JVo is a suitable constant and, again up to a constant, 

P( ar ' <.o,)= I-I 1-I 
k t o ' - + l  

d~i (  <~o)+ d~i (  <~o) - 
k '  + toPF,  oJ k '  + t, OpF, oJ 

1 ~ Co(k') [ ( - iko - (cos k' - I ) cos p F + OgVo sin k') - E 
m = _ _ . l  k '  L ,p  

) ~,~o,+ ~btkfo~,pr.,_tro(k, ) ~k~o,+ ,.<o~- o,] (3.10) 
k" + topF,  to k '  + r to ~r k" --  topF,  --  

with ao(k') = C O ~(k')so and ~7-to) = .L~,#to) + ( 1 - .if') ~V "t~ if 

.~'t7-(o) = voF~) (3.11 ) 

The r.h.s of (3.9) can be written as 

1 
7of f (3.12) 

where P(d$  (<-l ) )  and P(d$ (~ are given by (3.10) with Co(k') replaced 
with C_ l(k') and f o  ~(k') respectively, and ~(<o) replaced with $t < - l )  and 
$(o) respectively. 

The Grassmanian integration/~(d$ (~~ has propagator  

gtO)(x; y) ~, e - i , ' x - o - " Y )  PF tO) �9 = go, .... ,(x, y) (3.13) 
0~, tO' --= + 1 

if 

. f ~o)- ~,~o)+ ~,~o) (x y) - P(d~k ~~ ~,,,. co y.o,' 0 0 9 ,  O)tx 9 (3.14) 
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1 - - i k '  ( ) [ T o ~ (  ) ] o~, o~, (3.15) ~(o) ix; y) L-~ k '~ , .p  o,o, ,o'. = Z e " x-  Y)f0(k' k' 

where the 2 x 2 matrix To(k') has elements 

f 
[ To(k')] l, l = ( - i k o - ( c o s k ' -  1)cos P r +  Vo sin k') 

[ To(k')] 1,2 = [ To(k')] 2, 1 = - a o ( k ' )  

[To(k')]2,2=(-iko-(COS k ' -  1)cos p r - v o s i n k ' )  

which is well defined on the support offo(k') ,  so that, if we set 

then 

Ao(k') = det To(k') 

= [ - i k o - ( c o s  k ' -  1) cos  pF] 2 -  (0 0 sin k') 2 -  [tro(k')]2 

with 

1 ( [ r o ( k ' ) ]  t, l [ ro(k ' ) ]  l,~) 
r ~  [zo(k')]2,1 [zo(k')]z, 

f 
[zo(k')]  l. 1 = [ - i k o -  (cos k ' -  1) cos P r -  Vo sin k ' ]  

[l:o(k')],.  2 = [zo(k')]2, ,  = ao(k') 

[Z 'o(k ' ) ]  2, 2 = [ - i k o -  (cos k ' -  1) cos PF+ Vo sin k ' ]  

We perform the integration 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

f r .<o)) eY-~(~'{-<-t)) + ~'o P(d~, ~~ e - (3.20) 

where Eo = log ~ P(d@ t~ exp{~t~176 W e c a n  write 

. ~ / . ( - l )  = y-1 v_l F~-l) + s-1 F(-1) (3.21) 

with suitable constants v_ 1 and s_ 1, and, by following the same procedure 
which led from (3.9) to (3.12), we have 
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~ p(d~(<.-~)) e,~l-"(~, '~--'') 

if ~(-~)(q,,( < -~)) 

1 ) 
(3.22) 

where, up to a constant, 

=17 N ,4,1,(~<-1)+ //,h(<-l)- , . . , / .  
k '  + ropF,  ~o ~ ' / "  k '  + ropF,  ro 

k' oJ--:k.l  

_ . , _ _  x exp - L 
ca--'-- -I- 1 k' L, # 

x cos p r  + coy0 sin k') 

C_~(k ' ) [ ( - i ko - ( cosk ' -  1) 

(4--1)+ t x @(<- ')+ , t , (<- , , -  - o  ,(k') ~k'+o,p~..col~('~<----~ll;-c,] 
k '  + topF,  oJ Y k '  + .~pF,  o)  - -  . 

(3.23) 

with a_ l (k ' )  = ao(k') + C-ll(k ') s_l  and 

.~,~-(-l) = ?-lv_lF~-l) (3.24) 

The above procedure can be iterated, and at each step one has to 
perform the integration 

f p(d~b(~h)) er <<.h)) 1 <h)) er,~,(~.,-<~,) 

1 

1 f ))e = e (  cI , ' r ~h-,,) + th (3.25) 

which gives O'h_ l (k '  ) = O'h(k' ) + C h l ( k  ') sh, and defines the propagator 

g(h)(x; y)= 
r r  = + 1 

e i ( t o x -  to,y) PF (h) g.,.~,.(x, y) (3.26) 
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with 

,h) (x" y ) =  f P (d~  'h)) ~,,h)~- 6,~yh,+ 
o),  ( / J  x ~ X,  I ( / ) l  

1 
=~Lfl k' ~ ,  # e-ik"~"-Yfh(k')[ Tff l(k') ]'~ (3.27) 

and 

f 
[ Th(k')]  1, 1 = (  - i k o -  ( c~ k ' -  1 ) cos PF+ Vo sin k')  

[ Th(k')]  1 ,2-  [ Th(k')]  2, 1 = - -ah(k ' )  

[ Th(k')]2, 2 = ( - i k o -  (cos k ' -  1) cos P F -  Vo sin k')  

(3.28) 

so that 

1 ([[Zh(k')]~,~ [rh(k')] ~, 2) 
Thl(k')-Ah(k' ) Z'h(k')]  2, 1 [ Z'h(k')]  2, 2 

(3.29) 

where 

f 
[ z h ( k ' ) ] l , l = [ - i k o - ( c o s k ' -  1)cos p r - v o s i n k ' ]  

[ Zh(k') ] 1, 2 = [ Zh(k') ] 2.1 = o'h(k') 

['t 'h(k')] 2, 2 = [ - i k o - ( c o s  k ' -  1) cos PF+ Vo sin k ' ]  

(3.30) 

and 

A h ( k ' ) = [ - i k o - ( c o s k ' -  1 ) c o s p F ] E - - ( v o s i n k ' ) 2 - - [ o ' h ( k ' ) ]  2 (3.31) 

We can define also 

x, t o  y, to' 

1 
=~Lfl k' ~L.: e-ik"("-Y)Ch~(k')[ Th  l(k') ] ~~ '~ (3.32) 

where the last identity follows from (3.23) (with h in place of - 1 )  and 
(3.25). Set 

~~h) , k' ~o, , g,,,,,,,,(k ) = fh( )[ Th  ~(k')] o,' g•<h)'k' 1( k' ,o, ,,,,,o'~ ) = C~ )[ T~  ~(k') ] ,,i 
(3 .33)  
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so that 

g~ ~ Y) = L-fl k, ~ ~L., 
e--ik'.(x--y)..,(h) go,, ,o,( k ) 

e - a " t x - Y ) ~ t  <h)(k'oa,,~o', ) 

The localized part of the effective potential will be written as 

(3.34) 

A a ~  ~h) h ,~. ~h) ( 3 . 3 5 )  = ~ Vhr v 

which defines the running coupling constants vh. Moreover 

o 
ah (k ' )=  ~ Cf~(k')sj (3.36) 

j f h  

Note that, thanks to the definition of z(k') ,  see (2.3), iffh(k') ~ 0 ,  we have 

o 
o 'h(k '  ) _--- C ~ - l ( k  ' )  S h q- ~.  

j - -h+l  
sj (3.37) 

Hence, by (2.5) and the second equation in (3.8), ah(k') is a smooth 
function on T 1 x R, such that ah(k' ) = ~ ~  h sj for 0 ~< ik'l ~< toy h and 
O'h(k' ) = ~O=h+ 1 Sj for Ik'l -----ao~ 'h, w e  define trh = Z~ sj. 

Note that 

R e [ A h ( k ' ) + a h ( k ' ) 2 ] = - - k o 2 - - 4 s i n 2 ~ s  in P F +  sin PF--  (3.38) 

and pF+_-k'/2>O on the support offh(k') .  Hence there is a constant G3, 
such that, on the support offh(k')  

IAh(k') + ah(k')21 i> G32Y 2h (3.39) 

Let us now define, for any complex 2 with [21 ~< go, 

h* =- inf{ h >~ha: G3?* >>. 2#}, # =  IAc~ m I # 0 (3.40) 

and let us suppose that there exists eo <~go, such that, for 121 ~<eo and 
h>_.h*, 

�89 ~ ioh(k')l ~ 3~ (3.41) 

such an assumption will be justified by Lemma 2, in Sec. 3.4. 
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It follows that there exists a constant G l, such that, for any h i> h*, 

I ~(h) t --h g,~.,,,(k )l ~< Gt y (3.42) 

and, if 2 is real, 

{ ~ ( -<h*)  t --h* g',oT,o, (k)1 ~< G,y (3.43) 

Note that, if 2 is real, the factor 2 in front of # in the definition of h* could 
be substituted with any constant, without loosing the bounds (3.42) and 
(3.43). 

Finally, since IShl ~<iohl + Ioh+~l ~<3#, it easy to prove that, for 
121 ~< e0, h >~ h*, 0 ~< t ~< 1 and any q, 

d ~.(h) ,,tk, + q) ~< G 2 Ik'l y-2h s,,,, ,,,.~ (3.44) 

for a suitable constant GE, a bound which will play an important role in 
the following. 

3.2. The new effective potential ~(h)  can be written as in (2.18), by 
substituting the kernel "#/'(h)(k)~ with a new kernel ~/-(h)~,~_),tU which admits 
a graph representation in terms of new labeled graphs ~9:~, the renormalized 
graphs, which differ from the ones described in Sec. 2.3 in the following 
points: 

�9 there is no resonant vertex with no = +__m; 

�9 there are new resonant vertices with no = 0, produced by the renor- 
malization procedure, to which we associate a label hv ~< 0 and a 
factor ho . ~' Vh v, 

�9 at least one of the lines emerging from the resonant vertices with 
label hv has frequency label h~, while the other has frequency label 
h~ or h o -  1 (it is an immediate consequence of the renormalization 
procedure and momentum conservation); 

�9 the internal lines f ' s  carry two labels co~ i = 1, 2; 
___ (h,) ' k '  �9 given a line t', the corresponding propagator  is g , ,t ~); 

(D(, tD[ 

�9 on each resonant cluster V (including ~9.~ itself, if it is a resonance) 
the R - 11 - ~ operator acts; 

�9 the conservation of the momentum measured from the Fermi surface 
in each vertex gives the constraint 

k~, ~ = k' + ~ [ 2n eP + (co z 1 <~. - co<) PF] (3.45) 
g~<v 
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Then the second equation in (2.21) is replaced with 

"r "~')~, ,,, q(k) = ~ Val(,9~ ) (3.46) 

where ~" h is denotes the family of renormalized graphs of order q and ~ ,  n, q 

scale h, such that Eo~2nvp+Ef~int~O)(co~-co2)pF=2np and - [ L / 2 ]  
n ~< [ (L - 1 )/2 ], and Val(~ge) is computed following the rules listed 

above. 

3.3. The renormalization procedure allows us to improve the bound 
of the graph values, and to extend Lemma 1 to cover also the case of 
graphs with resonances. As an example, let us consider a resonant cluster 
V, which does not contain other resonant clusters; we can associate to it 
a resonance value 

=(hi) t 
~ ( k ' ) =  I-I g,,,~.,o~tkf) (3.47) 

the lines t'~v and r have a momentum measured from the Fermi surface 
(by the Definition in Sec. 2.5) k' =k'~=k'eov, and h = m i n f ~  v{he} is the 
scale of V. The effect of the localization operator is to replace .-h , v(k ) with 
~ ~ ( k ' )  = ~hv(0 ), so that the effect of the :~ operator is to replace =v(k-h ,) 
with 

~N~(k ' )  - E~(k ' )  - E~(0) = dt ~ N~(tk')  (3.48) 

Hence, by using (3.42) and (3.44), we can bound ~3hv(k ') in the following 
way: 

1~3%(k')1 ~< ~ aoGzG~v-~? h'z-hc 1-[ y-h, (3.49) 
g'~ V g ~ V  

where h~. is the external scale of V (see See. 2.4). Hence, with respect to the 
unrenormalized bound, ~ produces an extra factor of the form yh~-hc, 
which can be used to compensate the lack of the small factor associated to 
non resonant clusters, as a consequence of the condition (1.27). 

Concerning the resonant vertices, the renormalization procedure 
eliminated those with n~ = + m, but introduced new resonant vertices with 
n~ = 0. The new vertices carry a factor yh, which is a real gain in the power 
counting, if one can prove that vh is uniformly bounded. 

In fact the discussion can be generalized to graphs containing an 
arbitrary number of resonances: all these improvements will be used in 
Appendix 2, Sec. A2.3, to prove the following extension of Lemma 1. 
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3.4. L e m m a  2.  If ~m =~= 0 and y > 2 ~, there exists eo ~<go, such that, 
for ]2[ ~< eo and h* ~< h ~< O, we have 

sup I ~/'~h)~,., q(k)[ ~< (121B2) q e -i~/2) Inl (3.50)  
k~ ~h 

lah-A@ml<~AlAl2e -~r IVhl<~B3lAI (3.51) 

for some constants B2, B3, A. 

Remark. Lemma 2 implies that the series defining the kernel of the 
effective potential is convergent in the norm (2.19), uniformly in L = L i  
and ft. 

4. THE TWO-POINT  SCHWINGER FUNCTION 

4.1. In this section we define a perturbative expansion, similar to the 
one di~ussed for the effective potential in Sec. 3, for the two-point 
Schwinger function, defined by (1.10), which can be rewritten 

0 2 1 
SL'~(x; y ) =  lim 

q,+ =4,-  =0 
(4.1) 

where ~ dx is a shortcut for Z . ~ a  [~2p/2dxo, JV~=i P(d~') ev'~ and {q~f } 
are Grassmanian variables (the external field), anticommuting with { r ~ }. 
Note that all objects appearing in the r.h.s, of (4.1), as well as the other 
defined below, depend on L and fl, but we shall not indicate explicitly this 
dependence, in order to simplify the notation. 

Setting ~ =~,r ~<0)+ q/r and performing the integration over the field 
~,~ (ultraviolet integration), we find 

SL' ' (x;  y) 

~2 
= lim 

+ 04 , ;  
eJ dx dy,/, + ~o~, #(x; y) ~y 

1 ~ ~,.<o,+~- 
ax~q'x ~x + )e + ' • -~o" p (d~  ~o)) el-  --+-' ~o,- -,, -,, ~..,o,{o, <.o,) w,O,~q,, <.o, ~)[~+ =~- =o 

(4.2) 
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where ~o = J P(d~ '~ <.o)) e,~,o,t,,-<o,}, 

W~O)(~,~ ~o), ~b) = f dx dy(~b + r,-~o) l'x. y) ~,~ ~<o)- + ~,~ ~<o)+ rfto) tv. 

(4.3) 

V~~ y ) =  gtl)(x; y) + K~~ y) (4.4) 

and 

f dx dy X ~)+ r,.r x,2,(x, y) g~y2)- 
x ,z~ Z( I ), 

[tL--I)/2] 1 ~ ~o)  ~(k)ztkl)+.,t2)_ (4.5) 
= E ~ ~ L  "~Z(I" Z(2)' Ak +2rip 

n = L / 2  k e , # 

The kernels ~.to) ,(k) can be represented as sums of graphs of the �9 l'kg~ I ), Z(2), 

same type of those appearing in the graph expansion of the effective poten- 
tial ~t0); the new graphs differ only in the following respects: 

�9 if Zt2)= ~, the right external line is associated to the ~ -  field and the 
graph ends with a vertex carrying no 2cp~ factor; 

�9 if Zt~)= ~, the left external line is associated to the ~ + field and the 
graph begins with a vertex carrying no 2 ~  factor; 

Note that there is at least one vertex carrying a 2 ~  factor. The 
propagators of the internal lines emerging from vertices without a ;tOn 
factor will be called the external propagators. 

We have, in particular, 

oo [(L-- 1)/2] 1 }:, z Kg~ ~ ~ oL--fl k eL, 
q--3 n f - - [ L ~ 2 ]  3 ~  ' E # 

e--ik. r - -  y ) +  2 inpy Val(0) 

(4.6) 

where ~ -# '  o is the set of all labeled graphs of order q with two external n, q 
propagators, such that Y'.v~onv=n and h~= lVf; moreover, Val(0) is 
obtained from (2.20) by adding the two external propagators. 

It is very easy to take, the limit M ~ o6-in (4.2). In fact, for M large 
enough, the measure P(d@ t~~ is independent of M; hence, the limit is 
obtained by taking the limit as M ~ oo of the r.h.s, of (4.4). The limit of 
K~~ y) is trivial; in fact each graph contributing to it behaves as 1/]ko [ 2, 
as k0 ~ oo, so that the sum over ko is absolutely convergent. On the con- 
trary, the limit of gtl) has to be done carefully, since it involves a sum over 
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ko, which is not absolutely convergent; however, by using standard techni- 
ques, one can show easily that the limit does exist and, uniformly in L and 
fl, if IXo- Yo I~ < ill2 and I x -  Yl ~< L/2 ,  

CN (4.7) 
lg(')(X; Y)I ~< 1 + Ix-yl ~ 

for any N~> 0 and suitable constants CN. Hence, from now on, we shall 
suppose that the limit M ~ oo has been performed, but we shall still use the 
same notation for g(1) and K~~ y). 

Equation (4.2) can be written 

sL' '(X; y )=  V~~ Y)+ S(~ y) (4.8) 

where 

S(~ y )=  0'  1 f o)) 
o4,; e(a4, ( 

x el ax(*2*~. <'~ + ~x "<~176 ~ <.o,)+ ~o,(~(.<o,. *)1, + =,-  =o (4.9) 

4.2. We proceed now as in Sec. 3, using the same notations. We write 

02 1 .f S(~ 
Y ) = oq~ x * adp y ~/'o 

x ela~(~:~;x "<~ +*~C<~ r176176 w~~176176 (4.10) 

and decompose ~-(o)= Aa~7-(o)+ yr On the contrary, we do not split 
W (~ into a relevant and an irrelevant part. 

The integration over ~/(o) gives 

S(~ y )=  02 f eJdxdycb+V~3t,(x; y)cb- ~ 1 

dX(~x ~'x + 

(4.11) 

with 

W ( - l ) ( ~ b ( < ~ - l ) , ~ ) - - - f d x d y ( q ~  + x K ~ , o  (- l)(x, y) ff~y~<- 1)- 

+ r K(-l)( ; r162 x Y) q~x) 

V~.-~ )(x; Y)= g(~ y )+  K~-~ )(x; Y) 

(4.12) 

(4.13) 
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The kernels ~(--1~ 2)z'',, , .(k) can be represented as sums of graphs of the 
same type of those appearing in the graph expansion of the effective poten- 
tial ~(-~);  the new graphs differ only in the following respects: 

�9 if,~(2)= (~, the right external line is associated to the ~ -  field and the 
graph ends with a vertex carrying no 2r~. factor; 

�9 if Z{~)= ~b, the left external line is associated to the ~ § field and the 
graph begins with a vertex carrying no 2r~. factor, 

�9 ~ = ~ on resonances containing an external propagator (defined as 
before). 

�9 ha = 0 for all graphs, if Z (~) = Z (2) = (~. 

4.3. The above construction can be iterated and we find, for any 
h * <~ h <~ O, 

0 
Sr.P(x; y ) =  ~ trth')t~, sCh)(x; _~, ~,.., y) + y) (4.14) 

h' = h  

where 

s{h)(x, y ) =  0 2 1 ~ p ( d $  ~ ~h)) 

dxt~x q~x + 4't"'<h}+~-)e )+  ' ~k)l~+ = ~ - - - 0  X e ~ + t <.h~- .r..{h~(~t <.h} 14ah}(q~t .<h} 

(4.15) 

W~h~(~t_<h). ~) = f dx dy(~ + trth) tv {,<h)- + ~{ _<h}+ t.-~h} t,." 

(4.16) 

�9 �9 r"{h~(x" y) (4.17)  v~h~(x, y ) =  gth+ "(X, y) + . .~ .  , 

LC-th) The kernels ~z~}.x~:, .(k) can be represented as sums of graphs of the 
same type of those appearing in the graph expansion of the effective poten- 
tial ~h ) ;  the new graphs differ only in the following respects: 

�9 if Z~2)= ~, the fight external line is associated to the ~b- field and the 
graph ends with a vertex carrying no 2~b. factor; 

�9 if Z{~)= q~, the left external line is associated to the ~b + field and the 
graph begins with a vertex carrying no 2~,  factor; 

�9 ~ -  ~ on resonances containing an external propagator (defined as 
before); 

�9 ho = h + 1 for all graphs, if Z tl) =Z  ~2) =~b. 
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Let us now suppose that L = Li, i e Z +, so that the condition (1.22) is 
satisfied. The integration over the field ~(~h*) can be performed in a single 
step, since the covariance gt <h*) satisfies the same bound as gth*), see (3.42) 
and (3.43). Then the functional derivatives in (4.1) give 

0 

SL,'a(x; y ) =  ~ (g(h+')(X; y)+K~h~(x; Y))+ g(<h*)(X; y)+K~,<f*)(x; Y) 
h = h *  

(4.18) 

where 

oo [ ( L - -  1)/2] 1 
�9 ~ E e - i k ' ( x - y } + 2 i n p y  Val(&~) K~':~(x, y) -- E E --E h 

Lfl  k 
q=3 ~-- -[L/21 a ~ - . , . . ~  ~ " P  (4.19) 

and ~ # . h  is the set of all labeled graphs of order q with two external Or n ,  q 
1 propagators, such that ~ o ~  no + Y'.t ~i,t(~) (co2- t~ = n, and Val(oa.~) is 

computed with the rules explained after (4.17). A similar expression is valid 
for K~f*) (x ;  y), with g t<<'h*) in place of gth+ ~). 

All the functions appearing in the r.h.s, of (4.19) have the fast 
decay property. In fact, as we show in Appendix 3, See. A3.1 and Sec. A3.2, 
if Ix0 - Yol <~ fl/2, Ix - Yl <<. L/2,  we have, for any N >I 0 and suitable con- 
stants C s,  independent of i and fl, 

[g~h'( x" Y)[ < Cy max{ yh, L - t }  (4.20) 
' 1 + ),hN IX- -y lN  

CN [2[ max { ),h, L -~ } (4.21 ) 
I rc~h) ex; Y)I ~< ~hN N 

Similar bounds are verified by ..,.,rrt <h*)(X; y) and g( ~<h*. 

4.4. We are now ready to prove Theorem 1. First of all, we note that 
the r.h.s, of (4.19) has a meaning also if we take the formal limit i-~ oo, 
fl-~ oo, (recall that L = L i), by doing the substitution 

dk 
1 Z ~ (2n)2 (4.22) 

Li/3' k~,~, ,p '• 

In fact the integral over k is well defined, since k e T l and ko belongs 
to a bounded set, except in the case h = 0, and, for h = 0, each graph con- 
tributing to K~~ y) decays at least as [ko1-2 for large values of [kol, 
(see comments between (4.6) and (4.7)). 
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The substitution (4.22), applied to (3.34), allows to define g(h)(x, y) in 
the limit i--, oo, fl--, oo, at least for h ~< 0. For h = 1, one has to be careful, 
since the integral over ko is not absolutely convergent. However it is easy 
to prove, by using standard well known arguments, that the limit as i--, oo 
and offl--, oo ofg(~)(x; y) is well defined for xo # Yo and has the same dis- 
continuity in Xo-  Yo of the same limit taken on the free propagator (1.3). 
We shall denote this limit, as usual, by doing again the substitution (4.22) 
in the finite L and fl expression (see again comments between (4.6) 
and (4.7)). 

The previous considerations suggest that, for 2 real and small enough, 
there exists the limit 

S(x; x ) =  lim SZ,'P(x; y) (4.23) 
f l - -*  oo 
i--* oo 

and that this limit is obtained by doing the substitution (4.22) in all 
quantities appearing in the r.h.s, of (4.18). In Appendix 3, Sec. A3.3, we 
shall prove that this is indeed the case. 

We want now to prove that S(x; y) can be decomposed as in (1.23). 
Therefore, we shall suppose that the substitution (4.22) has been done 
everywhere. Note that the bounds (4.20) and (4.21) and the similar ones for 
K~.<~h*)(x; y) and g(<h*) are still valid, without any restriction on x, y and 
yh in place of max { yh, L -  l }. 

If h ~< 0, we can write 

g(h)(x, y)=  ~(h)(x; y) + r(h)(x; y) (4.24) 

where g(h)(x; y) is obtained by gth)(x; y), by substituting in (3.29) O'h(k' ) 
with a - So = 2gbm- 

By proceeding as in the proof of (A3.3) and using (3.51 ), it is easy to 
prove that, if [2[ ~< e0 and h I> h*, for any N>~ 0, 

c~ IAI 7h 
[r(h)(x; Y)[ ~< 1 + yhN IX--yl N (4.25) 

where CN, here and everywhere from now on, denotes a generic suitable 
constant, only depending on N. A bound similar to (4.25) is valid for 
r r ~ h*)(X; y), if 2 is real. 

e - i(  o.~x - c o ' y )  P F  By diagonalizing the quadratic form ~o~.,o,= + ~ 
[ T h l(k')]o~,o~,, it is possible to see that 

f dk' -~k"(~-Yfh(k') IF~y(k" a) 
~(h)(x; y )=  (2Zt)2 e A + B 

F~y( - k ' ,  -or)] (4.26) 
+ A - B  
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where 

Fxe(k', a)= q~(k', x, a) qb(k', -y ,  a), 

- ~1 [ ~/B-Ca _,prx 1 , /5  
A = -iko + ( 1 - c o s  k') cos pp 

C = Vo sin k' 

B = ~/C2 4t72 (4.27) 

We can rewrite the integral in (4.26) in terms of the k variable. Recall 
that, if 09 = sign(k) andfh(k') :~ 0, k = COpF+ k' and k' = og(Ikl - PF)- Hence, 
if we write (recall that O(k) denotes the step function), 

[ F~y( k', a) F~y(-k' ,  a)] 
A + B  + A - B  

= ~ [ Fxy(k', a) O(cok') 
o,= + ~ -A -+ B + 

it is easy to see that 

Fxy(-k ' ,  - a )  O(-cok')] 
] A - B  (4.28) 

f dk - - i k . ( x - - y )  
g'h)(x; y )=  (2n):~ e 

fh(k) ~ O(mk) e i~ - y )  

-iko+e(k,a)o,= I 

x [Fxy(k', a) 0(Ikl--pF) + Fxe(--k', --a) 0(--Ikl + PF)] 
(4.29) 

where 

e(k, a ) =  [ 1 - c o s ( l k [ - P r ) ]  cos PF+ sign(lkl--PF) ~/V20 sin2(lkl-PF) + a  2 

(4.30) 

By doing some other simple algebraic calculations and by using (2.3), 
we get 

1 

Z 
h - - - - h * +  1 

gth)(x; y) + gt ~h')(X; y) = Sl(X; y) + S2(x; y) 

Sl(X; y ) =  gtl)(x; y) (4.31) 

+f ak 
(2hi ~ [ 1 - f , ( k ) ]  ~b(k, x, a) r - y ,  a) 

e - iko(  x o  - y o )  

- iko + e(k, a)  
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where r x, a) is defined as in (1.21), and, if 2 e R, IAI ~ eo, we have 

0 CNyh 
IS~(x; y)l ~< IAI ~h 1 + 7hN IX--yl w 

h - -  * 

(4.32) 

We now define 

0 

2S2(x; y ) =  S2(x; y )+  E K~h.~(x; Y) 
h -----h* 

(4.33) 

then (4.21) and (4.32) yield 

o CN),h (4.34) 
IS2(x; Y)I ~< )', 1 + yhN IX--Yl N 

h ---h* 

and the same bound can be shown to hold also for S~(x; y). 
From (4.34) the bounds (1.24) and (1.25) follow. In fact, if 1 ~< 

]x -y f  <~yG3(2 lal) -~ (see (3.39) for the definition of G3) and hx>.h* is 
such that y-hx-~ < IX -- y[ ~< y--hx, (4 34) gives, if N > 1, 

hx-- l o C~vyh C,v (4.35) 
[S2(x; Y)[ <~ CN ~ yh + E )/Vh Ix_ylN~<Th"CN~ < 1 + Ix--yl 

h --'-h* h -"hx 

On the other hand, if Ix-Yl  >f yG3(2 lal) -~, (4.34) implies that 

CN ~ CN C~ lal 
[S2(x; y)] ~< Ix - y[N ?-~,v-l)h ~< I x _ ylN 10"1--N+l ~< 1 + [a[N Ix -- yl N 

h = h *  

(4.36) 

provided that N > 1. 
The proof of (1.26) is an easy consequence of the definition (3.26). In 

fact, by proceeding as in Appendix 3, one can prove that 

f dk' ~th)tk , gth)(x; y)-- ~ (2zt)2 o,,,, ) 
to = _+ 1 

C072h[ l i27  h ] 
~'~ ~2h + lifE y2h + li"-"-'--'~ + li ~ Coli (4.37) 

A similar bound is valid for g{ <-h*}(x; y); hence we have 

0 

IS,(x; y ) - g ( x - y ) l  ~< ~ Coli~ < Colilog(li- ' )  (4.38) 
h--h* 

The continuity of S(x; y) as a function of 2 e R, [2[ ~<eo, is completely 
trivial for 2 # 0  and, in 2 =0,  immediately follows from (1.23), (1.24) 
and (1.26). 
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4.5. The proof of item (iii) of Theorem 1 is based on similar argu- 
ments, applied to the finite L = L i and fl case, but one has to consider more 
carefully the contribution of the scales h < ha = min{ h >t ha: (2n)/L > 
aoyh}. In fact, for h < ha, one looses a yh factor in the bound analogous to 
the bound (4.37), valid for finite L and ft. 

Note that S a " a ( x ; y ) - - g ( l ) a ' # ( x ; y ) ,  as well as its limit f l - o ~ ,  is 
continuous as a function of Xo-Yo and that gt~)"P(x; y) is independent 
of 2. Hence we can write, by using (1.19), (4.18) and (3.27), 

p,,p p~,~ ~., .(h~ '0"0) - .  D ,~ ~o, o91, , 

h ~ = h * +  1 ..... O, (9-- +1  

pt <h*) (4.39) E  t':ko- E 
h - h *  ..... 0 to-- -  ::k l 

where R(h) denotes the contribution with n = 0  to the sum in the r.h.s, of ~,~,o 
(4.19), an analogous meaning has to be given to /~(<h*) and po L ' ~ -  ~,~,o 
--lim~ ~o- g~)L'P( O, Z; O, O) (it is bounded uniformly in fl and has a well 
defined limit as fl-~ ~ ) .  

Note now that, if h < h z ,  the support offh(k') is restricted to k' of the 
form (0, ko). Hence, if p e = m n a n / L  is not an allowed momentum, that is 
if mnL is an odd integer, the support offh(k') is empty and ..~h) ~0" O) O; 
if, on the contrary, P F is an allowed momentum, the support is not empty, 
but t, ~h) (0" O) can be expressed as the sum over k0 of a function odd in k0 oo) ,  o)x , 

hence it vanishes again. The same considerations apply to t ,~-<h*)(O" 0), if o 0), O) 

h* < hL. Moreover, there is a finite L and fl version of the bound (4.37), 
for h i> h*, so that we have 

0 

E E 
h = h * + l  t~-- +1  

1 
s 7'(h) ( 0 ;  O)  X ~(h)  , 

- ~  g,,,(k) 
o,,,,,o, L fl k ~'~ L. B 

+ Z  
co= :t: 1 

1 <h*) , _ - -  ~ g~,~~r 
go,, ~,, (0" O) Lf l  k e'~L.# 

0 

E 
h = max{h*,  h g }  

Co ff ~< Co # log(#- l) (4.40) 

Finally, we have, if h* < hL, 

o [ o  hL-l ] 
IR ~h) i+1r 

h = h *  h - ' h L  h - - ' h *  

2 Z log Z 
(4.41) 

822/89/3-4-14 
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and a similar bound, without the factor log IVLI-! is verified, if h*>~ h, .  
The bounds (4.40), (4.41) and Eq. (4.39) immediately imply that pL.a 

is a continuous function of 2 in 2 = 0, the only point where the continuity 
is not completely obvious. 

4.6. We now prove item (iv) of Theorem 1. We first note that, at 
finite volume L = L~ and zero temperature, the two-point Schwinger func- 
tion S L(x; y) can be written in the form 

1 [(L ~)/2] 
SL(x, t; y, O)=L  ~ ,,=-[L/21 

e - ik(x - y) + 2inpy f dko - ~  e-ik~ (4.42) 

This follows from (4.18), by taking the limit fl ~ ~ as in Sec. 4.4. 
For t v~ O, St(x, t; y, 0) can be also expressed in terms of the spectrum 

Z =--{E t ,..., Es of the one-particle Hamiltonian hxy, by the well known 
equation, easily following from its definition, 

SL(X, t; y, 0 ) =  sign____~t )--, Ur(X ) u*(y) 
2 r: E r = I t  

f dko e - i k~  
- (4.43) "11- E Ur(X ) u * ( y )  2re -- iko + E r --/.l 

r" Er~ 

where Ur(X) is the normalized eigenfunction of hxy with eigenvalue Er. 
The fast decay in t of S Z(x, t; y, 0) implies that there is no eigenvalue 

equal to/ t ;  hence, by comparing (4.42) and (4.43) with x = y, we get: 

lu~(x)l 2 1 t(L-t)/2] 
= - ~ ~ eZi"PxS.(k) (4.44) 

Er -- iko + Er--kt L k "~L n------ [L/2] 

It follows that, in order to prove that there is a gap d >i #/2, it is sufficient 
to prove that the r.h.s of (4.44) is analytic as a function of ko, in the strip 
{llmkol ~< ~/4}. 

For any fixed real 2 small enough and ko real, the r.h.s, of (4.44) can 
be bounded by proceeding as in Sec. 4.5. The only difference is that there 
is no integral over ko, so that we loose a factor yh in the contributions of 
scale h. It is easy to see that 

[(L - l )/2] 
1 E  E e2i"PYS,(k) 

Z k ~ t .  n=- - [L /2 ]  

1 (log,  + (4.45) 

We want to show that the same bound can be obtained, also if we 
take ko complex, with Jim ko] ~<#/4. Of course, the expansion discussed 
before is not suitable for such a task, since the cutoff functions fh(k) are 
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not analytic in k0. However, we can consider a different multiscale decom- 
position, involving only the k' variables. It is sufficient to modify the 
Eqs. (2.3)-(2.8), by substituting everywhere k, k' and Ik'l with k ,k '  and 
Ilk'tit,, respectively. Moreover Eq. (2.9) must be modified, by further 
substituting fhp(k) with Z(7-hP(k --PF)) + X(Y-hP( k + P~))" 

The analysis of Sec. 2 can be repeated, without any problem, since the 
bound (2.14) is still valid; in particular, Lemma I is still true. Also the 
analysis of Sec. 3 can be repeated, but now one has to be careful when 
bounding the contribution of a resonance, since the discussion leading to 
the bound (3.49) is not valid anymore. The reason is that the factor Ik'l in 
the r.h.s, of (3.44) is not of order ~,h-~, since k0 is not constrained anymore 
to be small by the support properties of the cutoff functions. We shall now 
discuss how this part of the analysis of Sec. 3 has to be modified. 

We first note that (2.14), (3.42) and (3.43) can be replaced by 

[ ~(h) t ~ - -  go,(k)l~G0[ iko + 7 hI t 

lg~,~)r ~< at I-iko + yhl-' 

I~h'~(k')l ~ a ,  I-ik0 +~h'l -' 

(4.46) 

while (3..44) becomes 

d zth~ t t k ,+q)  "~ go,, o,'~, 
G:[ Ik'l 

<~ y I_i tko+yhj2 
Ilk'liT' 1 (4.47) 

+ yh [--itko -+ yhl 

for a suitable constant G2, and (3.49) becomes 

t,e v 2 

f[ [ I -iko + ~,h~l 
x dt I--itko+~'h"[ 7h'~] I-I I - i t ko  + )'h'l - ~ (4.48) 

+ 7h"--Zl t ~ v 

where the second factor inside the square brackets can be bounded by the 
first one. 

At first sight, the bound (4.48) is not as good as the bound (3.49), 
since we do not get the factor ~ hel/-h'', which we claimed in Sec. 3 is 
necessary to compensate, in the case of a resonance, the lack of a small 
factor associated to non resonant clusters; even worse, the factor 
I - iko  + ~hvl/I-itko + 7h"[ is not bounded. However, it is easy to see, by 
using the first equation in (4.46), that the product of I~--~h(k')l by a 
propagator of scale h~, is bounded as in Sec. 3. 



692 Benfatto et  al. 

It follows that we can certainly bound the value of a graph ~9~ as in 
See. 3, if it contains only a resonance, not coinciding with the whole graph 
(so that there is at least one propagator external to the resonance). If ,9.~ 
itself is a resonance, but it does not contain other resonances, the previous 
argument does not apply, but in this case the factor y heV-h: w a s  not used 
in the proof of Lemma 2, see (A2.29); hence it is sufficient to bound 
I ~ h ( k ' ) l  by I~h(k')l  + 13~.(0)1 and the problem associated with the use 
of (4.47) disappears. 

In Appendix 4, we show that the previous considerations can be 
generalized, in order to treat a general graph, so that we get a new expan- 
sion of the effective potentials, satisfying the same bounds as before. 

The analysis in Appendix 4 also shows that the bound (4.45) is still 
valid, for ko real and 2 small enough. However, it is very easy to see that 
it is valid also if we substitute everywhere ko with ko + it/, Irtl ~ ff/4. In fact, 
the dependence on ko is now restricted to the factor (-iko +cos  p r -  
cosk)  -~ in the definition ofgt~)(k) and to [T~-~(k')],,.,o,, see (3.29). It is 
very easy to see that gt~)(k, ko + it/) can be bounded as before, if 2 is small 
enough, and the same is true for gt,,h),,,(k'), because, on the support of 
fh(k'), thanks to (3.38) and (3.41 ), 

k ! 

IRel'hh(k', ko + ir/)] [ t> IRe[Ah(k', k o ) ] l -  I,i1~- 4 Ivl cos p r s i n  2 -  
2 

r _[_ Cl ~2h( 1 - c2tff ) (4.49) 

with suitable constants c~ and c2- It follows that the bounds (4.46), hence 
the bound (4.45) too, are satisfied also for ko complex, if [Imko[ ~#/4 .  

APPENDIX 1. UNIFORM BOUND ON RATIONAL 
APPROXIMATIONS OF DIOPHANTINE NUMBERS 

A I.1. Let 09 be an irrational number such that 0 < co < 1 and let 
{Pi/q~}, i>~O, the sequence of its convergents, that is the sequence of its 
truncated continued fractions. We have p o = l ,  qo=[1/og]1> 1, hence 
Po/qo > 09. We define, for i t> 0, 

h+(x)--P2iq -p2i+2-p2i (x-q2i) 
q2i+2-'q2i 

h_(x)=P2i+ l q_P2i+3-P2i+l (x_q2i+l) 
q2i+s--q2i+l 

if q2i <~ x ~<q2i+2 

(AI.1) 

if q2i+l  <~x<~qEi+3 
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Note that the graph of h+(x ) (h_ (x ) )  is made by a sequence of segments 
joining the points (q2~, P2~) and (q2i+2, P2~§ P2/+I) and (q2i+3, 
P2i+ 3))" 

The well known properties of the convergents (see, for example, [D  ]) 
imply that 

(a) h + ( x ) > c o x > h _ ( x ) ,  Vx>~ql. 

(b) 6 + (x) = h + (x) - cox and ~_ (x) = cox - h _ (x) are strictly 
decreasing functions and limx_, o~ ~ _ (x) = 0. 

(c) If k , n ~ N , n > ~ q o  and c o n - k < O ,  then k-con>~tS§ the 
equality being satisfied iff k = P2i, n = q2~, i>~ 0; vice versa, if k, n e N, n >t q~ 
and c o n - k  > 0, then con-  k >I ~_(n), the equality being satisfied iff k = 
P 2 i + l , n = q 2 i + l ,  i>~O. 

A1.2. L e m m a  3. If k, n e N ,  i>~2 and ql <~n<~q~/2, then 

Pi n - - - k  
qi 

1 min{~ +(n), ~_(n)} >~6.-~ 

A1.3. Proof  o f  Lemma 3. Suppose that i >t 2 is even; the property (a) 
implies that n(p~/qi) - k  > n c o - k ,  so that, by (c), Vk, n e N, n >~ql, 

nco - k > 0 =:, n p~ - k > ~ _ ( n ) 
qi 

I f n c o - k < 0  and q~ <~n<~q~/2, we have, by (a), (b) and (c), 

pi tp_~ ~ ) n - n - - + k = - n c o + k - n  - c o  > ~ 8 + ( n ) - - - ( p ~ - c o q ~ ) =  
qi qi 

1 1 
rl t~ +(qi) >I t~ +(n)- -~  t~ +(qi) >I ~ t~ +(n) = t~ + (rl) qi 

Hence, if i>~2 is even and ql<~n<~qi/2,1n(pi/qi)-kl>>.min{�89 
8_(n)}. Analogously, if i is odd, one can show that, if ql <~n<~qi/2, 
[n(p~/q~)-kl >i min{ �89 8_(n), 8 § The claim of Lemma 3 immediately 
follows from the previous remarks. II 

A1.4. L e m m a  4. If there exist 
Into - kl >i cn-3, Vk, n e N, n > 0, then 

c > 0  and r t > l ,  such that 

1 c 

6,, >~-~ n-;' 
Vn >~ qt 
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A1.5. Proof  o f  Lemma 4. The function 8+(x) is a convex function, 
linear between q2i and q2~+ :; moreover 

C 
+ (q2i) --" P 2i - -  o J q 2 i  ~ " - ~  

q z i  

Since cx -~ is a convex function too, we have 

C 
~ + (x) >~-- Vx >~ qo 

X ~ 

We can show analogously that ~_(x) i> cx -~ Vx >i q~ and Lemma 4 
immediately follows from the definition of ~,. I 

Lemma 3 and Lemma 4 immediately imply the following result. 

A1.6. Propos i t i on  1. If there exist c > 0  and r~> 1, such that 
Into - kl >t cn-~, Vk, n ~ ~r n > 0, then, for any i i> 2, 

P i  
n m ~ k  

qi 

l c  1 
>>.2n~, i f  ql <.Nn<~qi 

By using Proposition I, one can define the sequence of pL, verifying 
(1.22) with Co=roe, by setting L~=qi ,  pLi=(ztPi/qt). 

APPENDIX 2. PROOF OF L E M M A T A  1 AND 2 

A2.1 Let us consider the quantity ~h) �9 ~/'.,q(k) introduced in (2.21) 

~C~h,~(k) = Z Val(0) (A2.1) 
n, q 

where, if we denote by T the set of clusters contained in ~9 (including ~9), 

E Val(oq) = E l]'q~nvl'''~nrq I-[ 6rot.~,g"; 
,ge,~ -h { g e  int(O) n, q nv i . . . .  , nVq 

no ! + . . .  + nvq  = n rood L ( A 2 . 2 )  

can be rewritten as 

,9~.~ "h {h:} T~ T g ~ TO n, q nv ! , ..., nvq 

nv I + ' . "  + n v q - - n  mod L (A2.3) 
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where the first product is over all the clusters contained in 0 (which are 
uniquely determined by the frequency labels assignment), h r is the scale of 
the cluster T and To is the collection of lines inside T which are outside the 
clusters internal to T (so that the last product is over the lines on scale h r 
contained in T, see Sec. 2.4). Finally, we shall suppose that k e @h. 

A2.2. Proof o f  Lemma 1. The case q = 1 is trivial. Let us suppose 
that q t_- 2 and let us consider one of the graphs contributing to the sum in 
the r.h.s, of (A2.3) and suppose that it satisfies the non resonance condition 
assumed in the statement of Lemma 1; this means that there are neither 
clusters nor vertices for which the resonance conditions (2.24) can occur. 

We start by considering a cluster T~ ~t(0), that is a minimal cluster 
(see Sec. 2.4). By (2.14) and (1.12), we have 

~b,, g,,,, k,~) --MT~( --r I-,.I) C~ <<" Fo I]  e (Got -hr) (A2.4) 
o c T  

where M ~  ) = M r  as we are considering clusters with depth D r =  1, (see 
Sec. 2.4-for notations). If h r =  1, the fact that the vertices are not resonant 
gives no constraint on the values of no. However, if h r~< 0, by the support 
properties of fh(k') and (1.22), we have, for any v ~ T, 

2ao?'hr ~ > Ik't-k't.I ~ 12nop + (co~v- eo~,)PFI 

= 12nop + (e ) t - -o ) t , )  mpl >I Co(Inv I + m) -~ (A2.5) 

since 2no+(ootv-oge,)m4:0 by hypothesis. Hence, if we define C~= 
( Co/2ao) i/z, we have 

Ino I >f C~ ~-hT/~ __ m (A2.6) 

The inequalities (2.14), (A2.4) and (A2.6) easily imply that, for any 
T ~ ~7~ ( O ), 

(A2.7) 

where C-2=max{em~/8, eC,y-'/~r and we used the trivial bound Zv~rln~l 
>t Intl. 
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Next we consider a cluster T e ~2(~9), that is a cluster of depth D r =  2. 
Since h r< 1, we can use again (A2.5) for any v e To; moreover, given a 
cluster ~ c  T, since 2nr+ (Ogror-Co:~r)m #0,  we have an analogous bound: 

2aoyhr~ > Ik':~-k't~l >i Co(Inrl + m) -~ (A2.8) 

where k:~ are k:~ are defined as in Sec. 2.4. 
By using (A2.5) and (A2.8), it is easy to see that 

( a - ) (  )( ) ~--3r I"rl YI ~,,v YIro "r'("")rk' ~ 
v~ T 0 f 

L M (2) (~To-(3~/4) lnvl)-2-4r <~ GorFo r C~r e e 
I) 

X [~-hrLre -2-4r ] 

Inr l  

(A2.9) 

where we used the bound Y'.r=r Inrl + Y'-o, r0 Inol i> Intl. 
By iterating theprevious procedure, and noting that 

" ET=T M ~  ) = E T = T  L r +  1 =q,  

�9 M~ ) + M ~  ) = M r  = L r + I ,  

we obtain in the end 

sup i~'(h)q(k)l,,, ~< IAi q e-(r ~ 
k ~  h 

• E 17 : 
{he} r e T  

(A2.10) 

where F 1 = F o )"~-ne Z e-r I.I/4 and Mx = ~r~  x Mr.  
The r.h.s, of (A2.10) can be further bounded by 

(1) neglecting the ordering relation between the frequency labels, and 

(2) taking into account only the fact that, if a cluster T has depth 
Dr, then hr<~ - D r +  2. We get 

sup I~" ,,,(h)q(k)l < e 
k E ~  h 

-r I,,IGq- 1F~, i~[q 

• [ E 
T TeT hT<~ --Dr+2 

"! 

~hT( _hr e _ 2 - ( D T +  2) r 

(A2.11) 
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where Y'.T* is the sum over all the possible choices of arrangements of the 
clusters over a chain of q vertices, which is bounded by 4 q. Hence we have 

(h)(k" k + 2np)[ sup I~ 'q  , 
k e  ~h  

~< e-(r 121 q 

( [ 1) x max ~ f ~  1-I 2 Y-~(yre-2-'~c'("'/2)~) ~ (A2.12) 
T T~T rfOr--2 

Suppose now y so large that ~=-y~/V2> I, and note that, VN>0,  
S CN > 0 such that 

CN 
e -  2-4C1r ~ 1 + (2 -4C (A2.13) 

l ~ r )  N 

(one can take CN= 1 + N!). Choose N so that ~N>~ 2y; then, since Mr>_. 1, 

E ~-r(~re-2-'r162 Mr 
r---DT--2 

~Y 1 +(2-4C,~)N(2y)  r ~Y(C42-~ Mr (A2.14) 
r---- - - 2  

where C4-'8CN/(2-4C1~) N. Since Zr~vMr<<.2q, (A2.12) and (A2.14) 
yield (2.25) for some constant B t. II 

A2.3. Proof of  I.omma 2. If there are resonances, the proof in 
See. A2.2 doesnot  apply, as (A2.6) and (A2.8) do not hold for resonances, 
and we have to carefully analyze the effect of the renormalization proce- 
dure described in Sec. 3. In particular we shall need the bound (3.44), 
which depend on the hypothesis (3.41). However, to check the validity o f  
(3.41), we need a bound on the effective potential; hence the proof will be 
inductive. We shall suppose that ~bm # 0, h ~< - 1 and that, if h + 1 ~< h' ~< 0, 

l a h , - - A ~  I ~ m IAI 2 e -"r ]Vh'[ ~ B3 IAI (A2.15) 

and we shall prove that it is possible to choose A and B 3 so  that (A2.15) 
is true also for h ' =  h, together with the bound(3.50) on the effective poten- 
tial. The proof of Lemma 2 will follow from the remark that (A2.15) is 
verified for h = -  1, by (3.5), if A 1> A0. 

Let ~9~ ~ y-h and q > 1 (the case q = 1 is trivial, except for the vh ~ ,  n, q 

vertex). Let us consider the collection V~ of maximal resonances, i.e., 
resonances which are not strictly contained in any other resonance. If V is 
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such a resonance, /'iv and :~: are its external lines, and k':~=k':o. Then 
(recall the definition in item (5) of Sec. 2.4) 

= g:,vg:ov~ v(k:~,)] (A2.16) 
v ,.~ g'~Vi = ~  V ~ V i  

where g:  is a shorthand for g~*() 2(k~), if : is an internal line of ~9~ g : =  1 
r (0{  " 

otherwise; l-I:~ v ,=~  g : =  1, if 0,~ itself is a resonance (so that all lines 
intersect V~); F~ = y~vv~ if n , = 0 ,  Fo = 2~b,,, otherwise. Finally the resonance 
value =hv:v., '-, vt":~) is given by 

( I7 "-~ V ~ a : ~  - -  

: ~  V: [ ~  V2 = IZI V ' ~  n V 

(A2.17) 

where V 2 is the collection of resonances which are strictly contained inside 
some resonance in V~, and which are maximal, and V2 c~ V is the subset 
of resonances in V2 which are contained in V. Note that (A2.17) extends 
(3.47) to the case in which V contains other resonances. 

We can write ~=h~tn,,,, ~'o.-, v~-,: ~) as in (3.48), that is 

- - h ~  =hv:k':7,) -- Z/~O) = dt ~ -=/~,(t k~.,~,) ~'= v ( k ~ ' ~ )  = -  v ,  . (A2.18) 

Note that 3.~tk~,,) can be written as in (A2.17), by substituting the 
momentum k~ of any line with t k~,;: + q:, for suitable values of q:. There- 
fore the r.h.s, of (A2.18) can be written as a sum of terms of the form 
(A2.17) with a derivative d/dt acting either 

(1) on one of the propagators corresponding to a line outside V2, or 
" h  v' (2) on one of t h e ~ w .  

In case (2), we write 

d d =~v(tk~g, =~r( ~ Z h v r , ( t k ~ + q : ~ / ) = ~ [ , . ,  , +q :~ ) - - , . ,  , 0)3 

d , - - , h  v ,  - (A2.19) 

so that, if the derivative corresponding to a resonance V acts on the value 
of some resonance V' c V, one can replace with 11 the ~ operator corre- 
sponding to V'. 

We can now iterate this procedure, by applying to ~hy,(tk~. + q:~) the 
Eq. (A2.17), with V3 (the family of resonances which are strictly contained 
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inside some resonance belonging to V 2 in place of V2) , and so on. At the 
end the r.h.s, of (A2.18) can be written as a sum of q v - 1  terms, if q v 
denotes the number of vertices contained in V, which can be described in 
the following way. 

(1) There is one term for each line Z e V; 

(2) if g' ~ To, where T is a cluster contained in V (see item (1) in Sec. 
2.4 and note that T can be equal to V), and T =  T ~1 c T ~ -  ~)... c T ~) = V 
is the chain of r clusters containing T and contained in V, then the graph 
value can be computed by replacing with ~ the ~ operator acting on T ~~ 
i = 1,..., r, even if T ~~ is a resonance, because of the comments after (A2.19); 

(3) the ~ operation acts on all other resonances contained in V; 

(4) the derivative d/dt acts on the propagator of Z, whose momentum 
is of the form t k~% + qe. 

A similar decomposition of the resonance value is now applied, for 
each term of the previous sum, to all resonant clusters, which are still affec- 
ted by the ~ operation. This procedure is iterated, until no ~ operation is 
explicitly present; it is easy to see that we end with an expression of the 
form 

where the sum is over all possible choices of s, {de} and {i(t')}, which 
satisfy the following conditions: 

(1) de is equal to 0 or 1; 

(2) if de O, i(t') is arbitrarily defined, otherwise i(f')~ { 1,..., s} and 
i(t') 4= i(~'), if t' 4= ~'; 

(3) the number of lines for which de = 1 is equal to the number of 
interpolating parameters s; 

(4) for each derived line t' there is a chain of r clusters 
T =  T ~r) CZ T ~ -  ~)... c T ~) = V, such that f' e To and V is a resonance; 

(5) no cluster can belong to more than one chain of clusters; 

(6) each resonance belongs to one of the chains of clusters; 

(7) the momentum of the derived line is of the form t~e)k' + qe, with 
[k'l <~ao7 -h~, (in general k' is not k~,, but it can depend also on the inter- 
polation parameters corresponding to resonances containing V, if any), 
where h~, is the external scale of V, that is the scale of the smallest cluster 
containing it. 
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The item (7) above implies that, for each derived line, by (3.44), 

d <~ ao G2yh~--h"Y -h' (A2.21) 

Note that 

h~-h,= ~ [ h ~ , - h r , , ]  (A2.22) 
i - - I  

hence the "gain" yh~-h"in the bound (A2.21), with respect to the bound of 
a non derived propagator, can be divided between the clusters of the chain 
associated to the derived line r so that each cluster has a factor 
yhT'}-hr"~< 1 associated with it; in particular we have a factor of this type 
associated with each resonance, for each term in the sum of (A2.20). Since 
the number of terms in this sum is bounded by 2 q- l, we can write, if we 
denote by V the family of resonant clusters, 

]Val('9~,)] <~2q-l 1-I ]FoI I-I (G3Y-hr)trI'I yh~--hr 
v~,9~ T ~ T  TE V 

(A2.23) 

where G3 = max { G,, ao GE}. 
We shall now consider, as in the proof of Lemma 1, a minimal cluster 

Te ~q~(~9,~) with hr~< 0 and note that 

1-I IFoI < Ivh~'hq ~'  (IAI Fo) ~#' rI e-r v~T vET (A2.24) 

where M ~  ) is the number of resonant vertices contained in T and 3~r~) is 
the number of non resonant vertices, so that Mr= M~ )= iffl~)+ M ~  )= 
Lr+ 1. If we now recall that nr=~v~rnv+Y.tEr(ogl--co~)m/2 and we 
use (A2.6) for non resonant vertices, we get 

/ \ 

I-I e-r  s-~i< C2 r +'~r e e J"~le-2-e~r'c'Y- (A2.25) 
\:~'r / v ~ T  

Hence, if lVhl ~ B3 IAI, by (A2.24) and (A2.25) we have 

(v~.9 levi)(G3~--hr)Lr~ (['~'[ c~)Mr (vr e-(3'/4) lm'l) 
x e -2 -k  l"r I yhrCy--hre--2-kC'y-h~*]~:' (A2.26) 

where C2 = max { B3, G3, C2, Fo}. 
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Next we consider a cluster Te ~2(~9~); by using (A2.6) for non reso- 
nant vertices and (A2.8) for non resonant clusters, whose number will be 
called 5]r~), we get 

(I-]~,=r e-2-:r '"~')(~ Oro [Fv]) (G3?-hr)'r 

~< i,~1~r c4~T ( i -  [ e-(3~/4)ln,l) 
veTo 

X e -2-4~ Inrl ~ --hrM~)~hr[ ~--hr e --2-4~C1~ "-hr/r ] ~lr (A2.27) 

where M ~ ) =  M~ ) -  AI~ ) is the number of resonant clusters strictly con- 
tained in T and 3]rr= 3]r~) + 3~t~). 

We iterate the previous procedure, as in the proof of Lemma 1, and we 
get 

IVal(~)l  ~<(2 l/],l) q c~Mre -r ( ~0 e-(r " 
o jr 

x {I-I Y--hTM~'Yhr[y--hre--2-'r ;tr} I-I Y h~r-hT (A2.28) 
T ~ T  T ~ V  

where V is the family of all resonant clusters strictly contained in 0~. 
Note that 

T~T T~V, T~Ojt TeV, T~gjt  
(A2.29) 

hence (A2.28) can be written also as 

IVal(O~)l <~Yh~(2 lAl)q c4Mre-(r ( I-I [e] -(~/4)lnvl) 
v~9~ 

T ~ T  

(A2.30) 

In order to bound W~h).~.n. q(k) we have to perform the sum of (A2.30) 
i and h labels. The sum over nv is trivial, as well as the sum over the n v, 09 ~ T 

over hr, for the clusters with 3~r r #0.  The sum over hr would give some 
bad factor, when 3~rr=0, but it turns out that there is indeed no sum in 
this case. In fact, if all the clusters and vertices strictly contained in T are 
resonant, then T itself must be a resonance and all its internal lines have 
the same k' as the external ones, implying, by support properties of the fh 
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functions, that the frequency label of the external lines is equal to h r -  
Hence we can proceed as in the proof of Lemma 1 and we get 

I ~/'(h)-- ~e, ,,. q(k)[ ~< e -r I"IB~ (A2.31) 

for a suitable constant B2 > B~. 
We still have to check that the bound (A2.15) is satisfied also by a h 

and v h. Note that, Vh < 0, 

oo 

S'h ----- O'h - -  O'h + 1 = --~ ,q~(h).. .9~, m, q ( - - m p )  
q - - 2  

oo 

Vh = ~Vh + I + ) , -h  = ~ "lT"(h)~,o, q ( - - m p )  
q----2 

(A2.32) 

where ~-(h)~.0. q(- -mp)  and U~'(h).. Je, m, q ( - -mp)  admit an expansion in terms of 
graphs 0~., differing from the corresponding expansion of Ue'(h)...~e,o, q(--mp) 
and ~(h),, ar m, q ( - -mp)  in the following respects: 

(1) the ~ operation on the whole graph, which is necessarily a 
resonance, is substituted with the localization operation, hence in the 
previous analysis ~9~ must not be included in the set V; 

(2) the internal scale of ,9.,~ is equal to h + 1, that is there is in the 
graph at least one line of frequency h + 1; 

(3) if all maximal clusters strictly contained in ~9~ are resonant, as 
well as the vertices belonging to ~9~ (see item (3) in Sec. 2.4), that is if 
Mo~ = 0, then Val(,9~ ) = 0. 

Item (3) follows from the support properties of the propagators, the 
definition of resonance in See. 2.5 and from the observation that all lines 
t' ~9~o would have k~. =0 ,  if/~ro =0 ,  since k ) - 0  for the external lines. 

Item (2) easily implies that the bound (A2.30) is valid also for the new 
graphs, possibly with a different value of C2, even if there is no ~ opera- 
tion on ~9~. Even more, items (2) and (3) together imply that bound 
(A2.31) can be improved and we can write, for any N and a suitable 
constant CN, for n = 0 or n =  m, 

I ~  ~h,~, ., q(-mp)[ ~< 7uh(121 cu). (A2.33) 

Note that item (2) alone implies the bound (A2.33) with N = 1, by (A2.30), 
which is sufficient for iterating the bound on V h. 



Electrons in a Lattice with an Incommensurate Potential 703 

Hence, we have, for 2 small enough and h < 0, 

Ishl~ B4) 'h IAI = e-(m/2)r (A2.34) 

Iv~l ~ ~, Ivy+, I + B412.12 (A2.35) 

where B4 is a suitable constant. 
The constant B4 depends in principle on the constants A and B3, 

appearing in the inductive hypothesis (A2.15), through the constant Ca in 
(A2.30), defined after (A2.26). However, it is easy to prove that in fact it 
can be chosen independently of A and B3, if 2 is small enough. The inde- 
pendence of A follows from the remark that the constant C2 of (A2.30) can 
be made independent of the constant A, if 2 is chosen so small that (3.41) 
is satisfied. The independence of B3 is a bit more involved. One has to 
observe that there is no graph contributing to ~(h) 2(_rap) ' n=O,m, 
(that is no second order contribution to Vh and Sh), containing resonant 
vertices. In fact one can construct graphs of this type, but their value is 
zero, since they contain necessarily a line with k~, =0,  whose propagator 
vanishes by its support properties, (see item (2) after (A2.32)). It easily 
follows that it is possible to choose B4 independent of B3, if 2 is small 
enough. 

By iterating the bound (A2.35) and using the bound (3.5) on Vo, we 
get, for h >~ h*, 

- -h*  9 - - r  Iv~l ~< ~,-~ Ivol + B4 I;~1 = ~,J ~< ~, I;~1- Ao + B4 E Y (A2.36) 
j = h  r =  1 

Moreover, the definition (3.40) of h* implies that y-h. IAI ~ Gs/(2 Iq~ml). 
Hence (A2.15) is satisfied also for h'=h, if we choose A = A o +  

B4~.,rC~=o)~-r, n3--aG3/(2 I~ml). I 

A P P E N D I X  3. P R O O F  OF T H E  B O U N D S  (4 .20 )  A N D  (4 .21 )  

A3.1. Proof of (4.20). By using (3.27)-(3.31), it is easy to prove 
that, for any N~>0, there is a constant GN such that, if O>~h>~h*, 
No, N~ >1 0 and No + Nl = N, 

ID~~ th~ (k')l ~< GNU' o 6o, (/)' x 
--hN max{ ~,h, [ah [} 

y2h + 0.2 
(A3.1) 

where Do and D~ denote the discrete derivative with respect to ko and k', 
respectively. 
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Hence, if IXo-Y0l ~< ill2 and Ix -Yl  ~< L~/2, we have 

( 4 ) N I x o - - Y o I N ~  N' Ig'h)(X; y)l 

NO Li  Ni 
<~ [ e-'~/P~x~ yo) _ 1 ] ~ [ e -'2~/L'~x- Y) - 1 ] [gent(x; y)[ 

1 = E e-,,o,x-,o'y, Pr ~ e--ik ' . tx--Y)oNo OT,  ~th) , g,o. o,,(k ) ~< 
,o. ,o'= + 1 L i f t  k 6 ~Li. fl 

<~ CNyh(max{yh ' L_l} ) y_hNmaX{yh, la l} y2h + G2 <~ C N y - - h N - m a x . -  ~ y L-l}) 

(A3.2) 

where CN denotes a varying constant, depending only on N, and the factor 
(max{yh, L-~}) arises from the sum over k' (note that the sum over k0 
always gives a factor y,, since h/3<~h* <~h). Therefore we have 

CN max { yh, L --1 } (A3.3) 
[gth)(x, Y)I ~< 1 + yhN IX-  y[ N 

and a similar bound is verified for g( ~h*)(X; y), if 2 is real. 1 

A3.2. Proof o f  (4.21). Let ~9~ be one of the graphs contributing to 
the kernel ..~.rc~h)~.,r,," y), see (4.19) and let us consider the two vertices, v~ and 
V q, connected to the external lines (which are associated with the external 
field). 

Suppose first that neither vi nor Vq, the external vertices, are contained 
in any cluster, different from ~9~ itself. In this case, we can bound Val(oajt) 
as in See. A2.3, by taking into account that 

(1) 

(2) 

(3) 

there is no factor associated to the external vertices; 

ho~ = h + 1; 

there are at least two lines of scale h + 1, the external propagators. 

Hence we get a bound differing from (A2.30) only because the power 
of 121 is q - 2  instead of q and each external propagator gives a contribu- 
tion proportional to y-h~,, 

]Val(~ )l <~ y-hs~(2 lAl)q-2 caMre-(e/2) ~n~ (v~ e-(e/a) ~nv~ ) 

x { ~ T  [ y-h~e-2-"c'r-h~"] ~ } (A3.4) 
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where the same notation of Sec. A2.3 is used, except for the definition of 
3~rr, which differs from the previous one, since we do not consider the 
external vertices in the calculation of A~r~); moreover we assigned a label 
nv = 0 to the external vertices. 

Suppose now that V l is contained in some cluster strictly contained in 
0~ and that the scale of the external propagator  emerging from V l is h l. 
In this case, there is a chain of clusters T ( t ) c  T ~2) -.. c T tr) =0.~,  such that 
v~ r T ~ and hr~,=hl; m o r e o v e r  ~ = 11 on T ~), i =  1,..., r, even if T (i) is a 
resonance. 

We proceed again as in Sec. A2.3, but we have to take into account 
the lack of the factor y h'~'''-hrc'', which was present before, when T r is a 
resonance. Since 0:~ is not a resonance (by definition) and h~,,, = hr,+,,, we 
loose at most a factor ~,h~,-hr"' = yh+ t--hr. If we also consider the bound of 
the external propagator  emerging from v~, we see that the overall effect of 
the vertex v~ in the bound of Val(0~)  is to add a factor y -h -~  to the 
expression in the r.h.s, of (A2.30), that is the same effect that we should get, 
if the only cluster containing v t was 0.~. 

A similar argument can be used for studying the effect of the vertex V q. 
Hence we get the bound (A3.4) for all graphs contributing to K~h~(x; y). 

We can now bound as in Sec. A2.3 the sum over 0~ in the r.h.s, of 
(4.19). Since the sum over k' gives a factor ~,h max{~,h, L - t } ,  we get, for 2 
sufficiently small, 

oS) O(3 
I k ' ( h )  t' ,.~r162 Y)I ~B5 ~ ~ B~ 121 q-2 e -(r 

n - -  ! q = 3  

x max{~'h, L -~ } ~ I~.1 B6 max{Th, L - t  } (A3.5) 

for suitable constants B5 and B 6. 

In the same way, for any NI ,  N2 f> 0, N = N~ + N 2 > 0, we have: 

N IX0-- Y0l N~ iX-- Yl N' IK~h.~(X; Y)I 

<~ 
[ ( L - -  1)/2] 1 

- �9 - f - t h )  n ( k )  ] E Lift E e ik (x y ) + 2 i n p y [ O N o O N l . ~ . ~ b ,  qb, 

n = -- [ L /2  ] k e ~Li, # 

We can now proceed as in Sec. A3.1, by using (A3.1); we get 

(A3.6) 

I x - y l  N I K ~ ( x ;  Y)I ~ CN9 '-hN I~,1 max{y h, L - ' }  (A3.7) 

a similar bound can be obtained for K~<f*~(x; y). 

822/89/3-4-15 
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A3.3. Limit L P ~ oo. Let us consider one of the finite L = Li and ,8 
quantities appearing in the r.h.s, of (4.18); if we interpret it as a Riemann 
sum of the corresponding L i =  fl = oo quantity, as defmed in See. 4.4, it is 
easy to prove that, for any h > h*, the difference between the two quantities 
can be bounded by a constant times (1/Zi+ 1/8). In fact one gets essen- 
tially the same bounds as in the proof of (4.20) and (4.21), up to a factor 
y-h(1/Li+ 1/~), coming from the comparison of the integral and the 
corresponding Riemann sum; we shall not give the details, which are 
completely straightforward. It follows that 

IS(x; y ) -Sz ;"P(x ;  y)l ~ C Ih*l ( l / L , +  1//3) , . p _ . ,  0 (A3.8) 

A P P E N D I X  4 

A4.1. In this section we shall discuss how the analysis of Sec. A2.3 
has to be modified, if the support functions fh do not depend on k0. As we 
have discussed in See. 4.6, we must use now the bounds (4.46), instead of 
(2.14); (3.42) and (3.43). The main difference (see (4.47)) is that the bound 
(A2.2 i) has to be replaced by 

d 
atl,,, r 

G 2 [ 1- iv vko + Yh~[ 

<~ al -~- [-iti(t)rvko + ?he[2 
~h~ ] 

+yh~ [-it~(~)zvko + yht[ (A4.1) 

with at = max { a0, 1 } and r v= / - / i  t~, where the product is over all resonan- 
ces strictly containing V. 

In See. 4.6 we remarked that this bound is not good for ko large; 
however this problem can be cared by using, for each resonance, the decay 
of the one of the propagators external to it, if the set of such propagators 
is not empty. Of course, it is not possible to use one fixed propagator for 
two different resonances, hence we decide to use, for this "balance" of large 
ko behaviour, only the propagator on the right of each resonance. It 
follows that we can define the set of "bad" resonances as the set V of 
the resonances V with g'~,= Eq +l,  that it the set of resonances, which have 
no internal line of the graph at the fight. In the evaluation of Val(8~) we 
shall not use for such resonances the interpolation formula (A2.18), but we 
shall simply bound I ~ ~ ( k ~ ) l  by 2 sup~;,j{' ~ ' ~ '  ,o ~ v~-t~,)[}. Note that this 
implies that, in (A4.1), r v must be substituted with the product over all 
interpolating parameters associated with the resonances strictly containing 
V, but not belonging to V. 

It is important to note that 9 can contain at most two resonances and 
that, if IV] = 2, one of them must coincide with the whole graph. This claim 
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easily follows from the remark that, if a graph 0,~ with external scale h con- 
tains a resonance V with f'~,=/'q+l, then the internal scale of 0~ must be 
equal to h + 1; hence no other cluster, except oq~ itself, can contain V. 

A4.2. In Sec. A2.3 the interpolating formula (A2.18) was used to 
produce a "gain factor," that allowed to control the sum over the scale 
label of the cluster containing the resonance. The remark above implies 
that the bounds (A2.31 ), (A2.34), (A2.35) would not have been modified, 
if we did not exploit the gain factor associated with the resonances belong- 
ing to V. We shall now prove that they survive also to the use of (A4.1) 
instead of (3.44). 

Note that, instead of (A2.23), one has 

IVal(0.~)] ~ 2  q - '  v I g o l  I - - i t r r ~ o ' + y h r [ L r  

(~\ I-/rrk~ ) 
x - [ --  it r r  r k o  + yhrl 

T V 

(A4.2) 

where t r is the interpolation parameter corresponding to the resonance T, 
if T eV, while t r = l ,  if T is not a resonance. Note that, for T ~  r, 
t r =  r r =  1. 

If we recall that L r =  3~rr+ M ~ ) +  M~ ) -  1 (see Sec. 2.4 and Sec. A2.3 
for notations), we can write 

I - - i t r r r k o + y h r l L r  i-i Y hr~;) "-< 
T ~ T  

[ - i t r r r k o  + 
(A4.3) 

and we can proceed as in the proof of (A2.30); the role of (A2.29) is taken 
by 

[ it rzrko + 2'hrl M~' = --  r ~, [ _ it v z  r k  ~ + ),hr[ 

1 1 
=(vI~vl  ik0+yh~,l)( I"[ yhr[) (A4.4, - --  r ~ v \ ~  [ - - i t r r r k o +  

By the remarks above about ~r, the r.h.s, of (A4.4) can be bounded by 
a constant times the r.h.s, of (A2.29). Hence we get again the bound 
(A2.30), with different values of the constants. 



708 Benfatto et  al. 

ACKNOWLEDGMENTS 

We are indebted to G. GaUavotti for many discussions and sugges- 
tions. We want also to thank the Erwin Schroedinger Institute, where part 
of this work was done, during the Workshops on "Field Theoretical 
Methods for Fermion Systems" and on "Discrete Geometry and Conden- 
sed Matter Physics," January 21-February 17, 1996. G.B. and V.M. were 
supported by MURST, Italy, and G.G. was supported by EC (TMR 
program). 

REFERENCES 

[AAR] S. Aubry, G. Abramovici, and J. Raimbaut, Chaotic polaronic and bipolaronic states 
in the adiabatic Holstein model, J. Stat. Phys. 67:675-780 (1992). 

[BLT] J. Belissard, R. Lima, and D. Testard, A metal-insulator transition for almost 
Mathieu model, Comm. Math. Phys. 88:207-234 (1983). 

[ D] H. Davenport, The Higher Arithmetic, Dover, New York, 1983. 
r Ds] E.I. Dinaburg and Ya. G. Sinai, On the one dimensional Schroedinger equation with 

a quasiperiodic potential, Funct. Anal, and its Appl. 9:279-289 (1975). 
IE] L. H. Eliasson, Floquet solutions for the one dimensional quasi periodic 

Schroedinger equation, Comm. Math. Phys. 146:447--482 (1992). 
I'G] G. Gallavotti, Twistless KAM tori, Comm. Math. Phys. 164:145-156 (1994). 
[GM] G. Gentile and V. Mastropietro, Methods for the analysis of the Lindstedt series for 

KAM tori and renormalizability in classical mechanics. A review with some applica- 
tions, Rev. Math. Phys. 8:393--444 (1996). 

[HI  T. Holstein, Studies of polaron motion, part 1. The molecular-crystal model. Ann. 
Phys. 8:325-342, (1959). 

[JM] R.A. Johnson and J. Moser, The rotation number for almost periodic potentials, 
Commun. Math. Phys. 84:403--438 (1982). 

[ KL] T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic 
long range order, Physica A 138, 320-358 (1986). 

I'LM] J .L.  Lebowitz and N. Macris, Low-temperature phases of itinerant Fermions inter- 
acting with classical phonons: the static Holstein model, J. Stat. Phys. 76:91-123 
(1994). 

[MP]  J. Moser and J. P6schel, An extension of a result by Dinaburg and Sinai on quasi 
periodic potentials, Comment. Math. Heir. 59:39-85 (1984). 

[NO] J. W. Negele and H. Orland, Quantum many-particle systems, Addison-Wesley, 
New York, 1988. 

[PF]  L. Pastur and A. Figotin, Spectra of random and almost periodic operators, Springer, 
Berlin, 1991. 

[ P] R. E Peierls, Quantum theory of solids, Clarendon, Oxford, 1955. 


